• 제목/요약/키워드: transforming growth factor beta 1

검색결과 370건 처리시간 0.032초

The Signaling Mechanism of TGF-β1 Induced Bovine Mammary Epithelial Cell Apoptosis

  • Di, He-Shuang;Wang, Li-Gang;Wang, Gen-Lin;Zhou, Lei;Yang, Yuan-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권3호
    • /
    • pp.304-310
    • /
    • 2012
  • The present study showed that Transforming growth factor beta 1 (TGF-${\beta}_1$) can induce apoptosis of bovine mammary epithelial cells. This apoptosis was also observed with phosphorylation of Smad2/3 within 0.5-2 h. Afterwards the signal transferred into the nucleus. Moreover, intracellular free $Ca^{2+}$ concentration was significantly elevated as well as Caspase-3 activated and DNA lysised, thereby inducing the programmed cell death. This signaling pathway of TGF-${\beta}_1$ was blocked by SB-431542 ($10^{-2}{\mu}M$) via inhibiting ALK-5 kinase activity, which thus reversed the anti-proliferation and apoptosis effect of TGF-${\beta}_1$ in mammary epithelial cells. These results indicated that TGF-${\beta}_1$ induced apoptosis of bovine mammary epithelial cells through the ALK-5-Smad2/3 pathway, which plays an important role in inhibiting survival of mammary epithelial cells. Moreover, intracellular $Ca^{2+}$ also played a critical role in TGF-${\beta}_1$-induced cell apoptosis.

Development of TGF-$\beta$ Resistance During Malignant Progression

  • Kim, Yong-Seok;Yi, Young-Suk;Choi, Shin-Geon;Kim, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiations as well as a number of basic physiological functions. The effects of TGF-$\beta$ are critically dependent on the expression and distribution of a family of TGF-$\beta$ receptors, the TGF-$\beta$ types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. the coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-$\beta$ RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-$\beta$ RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-$\beta$ RII gene may be a very critical step in the pathway of carcinogenesis.

  • PDF

Fine Tuning and Cross-talking of TGF-β Signal by Inhibitory Smads

  • Park, Seok-Hee
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.9-16
    • /
    • 2005
  • Transforming Growth Factor (TGF)-$\beta$ family, including TGF-$\beta$, bone morphorgenic protein (BMP), and activn, plays an important role in essential cellular functions such as proliferation, differentiation, apoptosis, tissue remodeling, angiognesis, immune responses, and cell adhesions. TGF-$\beta$ predominantly transmits the signals through serine/threonine receptor kinases and cytoplasmic proteins called Smads. Since the discovery of TGF-$\beta$ in the early 1980s, the dysregulation of TGF-$\beta$/Smad signaling has been implicated in the pathogenesis of human diseases. Among signal transducers in TGF-$\beta$/Smad signaling, inhibitory Smads (I-Smads), Smad6 and Smad7, act as major negative regulators forming autoinhibitory feedback loops and mediate the cross-talking with other signaling pathways. Expressions of I-Smads are mainly regulated on the transcriptional levels and post-translational protein degradations and their intracellular levels are tightly controlled to maintain the homeostatic balances. However, abnormal levels of I-Smads in the pathological conditions elicit the altered TGF-$\beta$ signaling in cells, eventually causing TGF-$\beta$-related human diseases. Thus, exploring the molecular mechanisms about the regulations of I-Smads may provide the therapeutic clues for human diseases induced by the abnormal TGF-$\beta$ signaling.

Analysis of Gene Expression Modulated by Indole-3-carbinol in Dimethylbenz[a]anthracene-induced Rat Mammary Carcinogenesis

  • Kang, Jin-Seok;Park, Han-Jin;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.222-229
    • /
    • 2009
  • Our previous finding that pre-initiation treatment of indole-3-carbinol (I3C) represents a chemopreventive effect in dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis has prompted us to test the global expression of genes at an early stage. Rats were continuously fed 300 ppm I3C in their diet at 6 weeks of age and were injected with DMBA at 7 weeks of age, and were sacrificed at 8 weeks of age. Global gene expression analysis using oligonucleotide microarrays was conducted to detect altered genes in DMBA- or DMBA plus I3C-treated mammary glands. Altered genes were identified by fold changes of 1.2 and by t-test (P<0.05) from the log ratios of the hybridization intensity of samples between control (Group 1) and DMBA (Group 2), and from those of samples between DMBA (Group 2) and DMBA plus I3C (Group 3). From these genes, we chose altered genes that were up- or down-regulated by DMBA treatment and recovered to the control level by I3C treatment. For early stage of carcinogenesis, I3C treatment induced the recovery to normal levels of several genes including cell cycle pathway (cyclin B2, cell division cycle 2 homolog A), MAP signaling pathway (fibroblast growth factor receptor 1, platelet derived growth factor receptor, beta polypeptide), and insulin signaling (protein phosphatase 1, regulatory (inhibitor) subunit 3B and flotillin 2), which were up-regulated by DMBA treatment. In addition, I3C treatment induced the recovery to normal levels of several genes including those of MAPK signaling (transforming growth factor, beta receptor 1 and protein phosphatase 3, catalytic subunit, beta isoform), which were down-regulated by DMBA treatment. These results suggest that the targeting of these genes presents a possible approach for chemoprevention in DMBA-induced mammary carcinogenesis.

Ovarian TGF-β1 Regulates Yolk Formation Which Involve in Egg Weight of Korean Native Ogol Chicken

  • Kang, W.J.;Seo, D.S.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권11호
    • /
    • pp.1546-1552
    • /
    • 2002
  • Proliferation and differentiation of ovarian cells are regulated by gonadotrophins and various intraovarian factors, with many of their actions dependent on growth factors. Transforming growth factor-$\beta$ (TGF-$\beta$) has been reportedly involved in the regulation of ovarian follicular development. The overall objectives of the present study were to examine the influence of TGF-$\beta$1 expression in ovarian follicular development or yolk formation and to investigate the association of egg weight with ovarian TGF-$\beta$1 expression at 60 wk. Egg weights of 70 Korean Native Ogol Chicken (KNOC) were recorded from 20 to 60 wk. Ovaries were taken at 60 wk, and TGF-$\beta$1 was measured with ELISA, respectively. Based on egg weight up to 60 wk and TGF-$\beta$1 expression in ovary, the chickens were divided into high and low groups. Egg weights and follicle weight in the high TGF-$\beta$1 group were higher than those in the low groups. Also, TGF-$\beta$1 expression and follicle weight in high egg weight group were higher than those in the low groups. Taken together, the results indicate that TGF-$\beta$1 is associated with egg weight in KNOC. This association of TGF-$\beta$1 with egg weight in KNOC supports the report that TGF-$\beta$ is mainly involved in the development and differentiation of follicles in the poultry. Further studies about other endocrine factors related to yolk formation are required to fully understand the endocrine mechanism of egg weight in Korean Native Ogol Chickens.

rhTGF-${\beta}2$/PLGA 복합체를 electrospray법으로 코팅한 타이타늄 임플란트 골 유착의 microCT 계측: a preliminary rabbit study (Osseointegration of the titanium implant coated with rhTGF-${\beta}2$/PLGA particles by electrospray: a preliminary microCT analyzing rabbit study)

  • 이우성;김성균;허성주;곽재영;이주희;박지만;박윤경
    • 대한치과보철학회지
    • /
    • 제52권4호
    • /
    • pp.298-304
    • /
    • 2014
  • 목적: 본 선행 연구는 recombinant human transforming growth factor-${\beta}2$ (rhTGF-${\beta}2$)/ poly lactic-co-glycolic acid (PLGA) 복합체를 타이타늄 임플란트에 처리하였을 때 골 유착에 미치는 영향을 알아보기 위해 시행된 것으로 토끼 모델을 사용하였다. 재료 및 방법: 8개의 임플란트를 300V에서 3분 동안 양극 산화하였다. 그 중 4개는 electrospray법으로 rhTGF-${\beta}2$/PLGA를 코팅하여 실험군으로 설정하였다. 4마리의 New Zealand rabbit의 tibiae에 1개씩의 실험군과 대조군 임플란트를 식립하였으며, 3주와 6주에 2마리씩 희생하여 micro-computed tomography(microCT) 촬영 후 분석하였다. 결과: Scanning electron microscope (SEM) 사진에서 rhTGF-${\beta}2$/PLGA 입자가 임플란트 표면에 균일하게 분산되어 있음을 확인하였다. MicroCT 분석 결과 통계적으로 유의하지는 않지만 rhTGF-${\beta}2$/PLGA를 처리한 임플란트가 bone volume/total volume (BV/TV)와 trabecular thickness (Tb.Th) 값이 더 높은 경향성을 보였으며, cross sectional view에서 더 많은 골이 형성되었음을 확인하였다. 결론: rhTGF-${\beta}2$/PLGA 표면처리된 임플란트가 주변 골의 양적 성장을 촉진시킬 수 있으며 임플란트 초기 골 유착을 증진시킬 수 있는 가능성을 보였다.

E-ray를 조사한 쥐의 피부에서 증식된 keratinocyte에 의한 TGF-β1 발현 (TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice)

  • 윤아란;김도년;서민구;오상택;서정선;전세모;차정호;이승덕;이숙경
    • 생명과학회지
    • /
    • 제22권2호
    • /
    • pp.133-141
    • /
    • 2012
  • 우리는 방사선피부염 동물 모델을 확립하여, 이차 면역 기관에서의 면역 세포 비율 변화를 관찰하였다. 또한, 방사선 조사에 의한 병소에서 transforming growth factor-${\beta}1$ (TGF-${\beta}1$)과 interlukin-10 (IL-10)의 발현을 증가시킨 세포를 분석하였다. Hairless-1 (HR-1) 쥐의 posterior dorsal 부위에 6 일간 매일 10 Gy 씩 electron (E)-ray를 국부 조사하여 방사선피부염 모델을 만들었다. FACS를 이용하여 면역 세포 비율의 변화를 분석한 결과 비장과 림프절에 존재하는 항원제시세포와 T 세포 및 B 세포들의 비율이 E-irradiation에 의해 영향을 받았다. 피부에서 세포 특이적인 마커와 사이토카인들의 발현 양상은 면역형광염색법으로 확인하였다. 방사선 조사 후, TGF-${\beta}1$과 interlukin-17 (IL-17)은 regulatory T 세포(Treg)보다 keratin-14 (K-14)를 발현하는 진피의 끝부분에서 높게 발현되었다. Interlukin-10 (IL-10)는 Treg 뿐만 아니라 T helper 17 (Th17) 세포, dendritic 세포, macrophage 중 어느 것과도 같은 위치에서 검출되지 않았다. 우리의 데이터는 방사선피부염 동물 모델의 병소 안에서, TGF-${\beta}1$이 증식된 keratinocyte에 과발현된다는 것을 나타낸다.

New evidence on mechanisms of action of spa therapy in rheumatic diseases

  • Tenti, Sara;Fioravanti, Antonella;Guidelli, Giacomo Maria;Pascarelli, Nicola Antonio;Cheleschi, Sara
    • 셀메드
    • /
    • 제4권1호
    • /
    • pp.3.1-3.8
    • /
    • 2014
  • Spa represents a treatment widely used in many rheumatic diseases (RD). The mechanisms by which immersion in mineral or thermal water ameliorates RD are not fully understood. The net benefit is probably the result of a combination of factors, among which the mechanical, thermal and chemical effects are most prominent. Buoyancy, immersion, resistance and temperature play important roles. According to the gate theory, pain relief may be due to the pressure and temperature of the water on skin; heat may reduce muscle spasm and increase the pain threshold. Mud-bath therapy increases plasma ${\beta}$-endorphin levels and secretion of corticotrophin, cortisol, growth hormone and prolactin. It has recently been demonstrated that thermal mud-bath therapy induces a reduction in circulating levels of prostaglandin E2, leukotriene B4, interleukin-$1{\beta}$ and tumour necrosis factor-${\alpha}$, important mediators of inflammation and pain. Furthermore, balneotherapy has been found to cause an increase in insulin-like growth factor-1, which stimulates cartilage metabolism, and transforming growth factor-${\beta}$. Beneficial anti-inflammatory and anti-degenerative effects of mineral water were confirmed in chondrocytes cultures, too. Various studies in vitro and in humans have highlighted the positive action of mud-packs and thermal baths, especially sulphurous ones, on the oxidant/antioxidant system. Overall, thermal stress has an immunosuppressive effect. Many other non-specific factors may also contribute to the beneficial effects observed after spa therapy in some RD, including effects on cardiovascular risk factors (e.g. adipokines) and changes in the environment, pleasant surroundings and the absence of work duties.

Hair follicle development and related gene and protein expression of skins in Rex rabbits during the first 8 weeks of life

  • Wu, Zhenyu;Sun, Liangzhan;Liu, Gongyan;Liu, Hongli;Liu, Hanzhong;Yu, Zhiju;Xu, Shuang;Li, Fuchang;Qin, Yinghe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.477-484
    • /
    • 2019
  • Objective: We aimed to observe hair follicle (HF) development in the dorsal skin and elucidate the expression patterns of genes and proteins related to skin and HF development in Rex rabbits from birth to 8 weeks of age. Methods: Whole-skin samples were obtained from the backs of Rex rabbits at 0, 2, 4, 6, and 8 weeks of age, the morphological development of primary and secondary HFs was observed, and the gene transcript levels of insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF), bone morphogenetic protein 2 (BMP2), transforming growth factor ${\beta}-1$, 2, and 3 ($TGF{\beta}-1$, $TGF{\beta}-2$, and $TGF{\beta}-3$) were examined using quantitative real-time polymerase chain reaction (PCR). Additionally, Wnt family member 10b (Wnt10b) and ${\beta}$-Catenin gene and protein expression were examined by quantitative real-time PCR and western blot, respectively. Results: The results showed significant changes in the differentiation of primary and secondary HFs in Rex rabbits during their first 8 weeks of life. The IGF-I, EGF, $TGF{\beta}-2$, and $TGF{\beta}-3$ transcript levels in the rabbits were significantly lower at 2 weeks of age than at birth and gradually increased thereafter, while the BMP2 and $TGF{\beta}-1$ transcript levels at 2 weeks of age were significantly higher than those at birth and gradually decreased thereafter. ${\beta}$-Catenin gene expression was also significantly affected by age, while the Wnt10b transcript level was not. However, the Wnt10b and ${\beta}$-catenin protein expression levels were the lowest at 2 and 4 weeks of age. Conclusion: Our data showed that a series of changes in HFs in dorsal skin occurred during the first 8 weeks. Many genes, such as IGF-I, EGF, BMP2, $TGF{\beta}-1$, $TGF{\beta}-2$, $TGF{\beta}-3$, and ${\beta}$-Catenin, participated in this process, and the related proteins Wnt10b and ${\beta}$-Catenin in skin were also affected by age.

Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways

  • Lee, Min Jung;Chang, Byung Joon;Oh, Seikwan;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.436-446
    • /
    • 2018
  • Background: The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods: We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results: Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein $(MBP)_{68-82}$ peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-${\gamma}$, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor ${\beta}1$, transforming growth factor ${\beta}$, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-${\kappa}B$ signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion: Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-${\kappa}B$ signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.