• Title/Summary/Keyword: transforming growth factor

Search Result 546, Processing Time 0.029 seconds

Percutaneous Absorption of Antisense Phosphorothioate Oligonucleotide in vitro

  • Lee, Young-Mi;Song, Kyung;Lee, Sung-Hee;Ko, Geon-Il;Kim, Jae-Baek;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 1996
  • Antisense oligonucleotides seem to provide a promising new tool for the therapy. Choi et al. (1995) reported antisense phosphorothioate oligonucleotides (PS-ODN, 25 mer) complementary to TGF-.betha. mRNA designed for scar formation inhibitor to eliminate scars, which was caused by undesired collagen deposition due to overexpression of TGF-.betha., in wounded skin. PS-ODN were evaluated in vitro for skin penetration using normal and tape-stripped damaged rat skin. The in vitro skin transports were carried out with partially modified PS-ODN (6S) and fully modified PS-ODN (25S). The cumulative amount of PS-ODN (6S) penetrated through normal rat skin was $0.234{\pm}0.041{\mu}g/cm^2$ and that of tape-stripped damaged rat skin was $1.077{\pm}0.301{\mu}g/cm^2$ over 8 hrs. PS-ODN (25S) can not be found in receptor medium through normal skin due to high molecular weight (Mol.Wt.=8,000) and polyanionic charge. However, the cumulative amount of PS-ODN (25S) penetrated across damaged rat skin in PBS was $0.340{\pm}0.296{\mu}g/cm^2$ over 8 hrs. The absense of dermis raised the cumulative amount of PS-ODN (6S) penetrated through rat skin. And the fluxes of PS-ODN (6S) and PSODN (25S) at 8hrs across damaged rat skin were $134.63{\pm}37.67{\mu}g/cm^2$ h, and $42.50{\pm}36.95ng/cm^2$ h, respectively. While PS-ODN (25S) was stable in 10% heat inactivated fetal bovine serum (FBS) during 24 hrs, PS-ODN (6S) was less stable than PS-ODN (25S), but was markedly stable than unmodified phosphodiester. It is suggested that the cumulative amount of PS-ODN (6S) penetrated through damaged rat skin is larger than that of PS-ODN (25S) since the former is easier to degrade by nuclease than the latter and then is apt to penetrate into skin. Thus, PS-ODN represents a logical candidate for further evaluation due to the potential for delivery into the wounded skin.

  • PDF

Ganoderma Lucidum Pharmacopuncture for Teating Ethanol-induced Chronic Gastric Ulcers in Rats

  • Park, Jae-Heung;Jang, Kyung-Jun;Kim, Cheol-Hong;Kim, Jung-Hee;Kim, Young-Kyun;Yoon, Hyun-Min
    • Journal of Pharmacopuncture
    • /
    • v.18 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • Objectives: The stomach is a sensitive digestive organ that is susceptible to exogenous pathogens from the diet. In response to such pathogens, the stomach induces oxidative stress, which might be related to the development of both gastric organic disorders such as gastritis, gastric ulcers, and gastric cancer, and functional disorders such as functional dyspepsia. This study was accomplished to investigate the effect of Ganoderma lucidum pharmacopuncture (GLP) on chronic gastric ulcers in rats. Methods: The rats were divided into 4 groups of 8 animals each: the normal, the control, the normal saline (NP) and the GLP groups. In this study, the modified ethanol gastritis model was used. The rats were administrated 56% ethanol orally every other day. The dose of ethanol was 8 g/kg body weight. The normal group received the same amount of normal saline instead of ethanol. The NP and the GLP groups were treated with injection of saline and GLP respectively. The control group received no treatment. Two local acupoints CV12 (中脘) and ST36 (足三里) were used. All laboratory rats underwent treatment for 15 days. On last day, the rats were sacrificed and their stomachs were immediately excised. Results: Ulcers of the gastric mucosa appeared as elongated bands of hemorrhagic lesions parallel to the long axis of the stomach. In the NP and GLP groups, the injuries to the gastric mucosal injuries were not as severe as they were in the control group. Wound healings of the chronic gastric ulcers was promoted by using GLP and significant alterations of the indices in the gastric mucosa were observed. Such protection was demonstrated by gross appearance, histology and immunehistochemistry staining for Bcl-2-associated X (BAX), B-cell lymphoma 2 (Bcl-2) and Transforming growth factor-beta 1 (TGF-${\beta}1$). Conclusion: These results suggest that GLP at CV12 and ST36 can provide significant protection to the gastric mucosa against an ethanol induced chronic gastric ulcer.

Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro

  • Song, Tingting;Yang, Weiren;Huang, Libo;Yang, Zaibin;Jiang, Shuzhen
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.993-1005
    • /
    • 2021
  • Objective: Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods: The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) µmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results: The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion: In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.

Skin Moisturizing Activity of Unripe Apple(Immature Fruit of Malus pumila) in Mice (풋사과 추출물의 피부 보습 효과)

  • Park, Hye Rim;Kim, Jae Kwang;Lee, Jae Kyoung;Choi, Beom Rak;Kim, Jong Dae;Ku, Sae Kwang;Jegal, Kyung Hwan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.4
    • /
    • pp.63-74
    • /
    • 2022
  • Objectives : Skin aging is generally characterized by wrinkles, sagging, loss of elasticity roughness, pigmentation and dryness. This changes is caused by reducing the elements constituting the extracellular matrix contributing to the physiological properties of the skin, such as collagen fiber, elastic fiber, and hyaluronic acid. Adequate skin hydration is important to maintain normal skin function and reduce skin aging. The present study is objective to observe skin moisturizing effects of Unripe apple(UA, Immature fruit of Malus pumila Mill) in vivo and its underlying molecular mechanisms. Methods : ICR mice were orally administerd UA(100, 200 and 400mg/kg/day) for 8 weeks, and skin water contents and the expression of transforming growth factor (TGF)-𝛽1, ceramide, hyaluronan and collagen type I(COL1) were measured in dorsal back skin of the mice. Gene expression of hyaluronan synthase(HAS1, HAS2, HAS3), collagen synthase(COL1A1, COL1A2) and TGF-𝛽1 were also determined by realtime RT-PCR. Results : Skin water contents and the expression of TGF-𝛽1, ceramide, COL1 and hyaluronan were significantly increased in UA group(100, 200 and 400mg/kg/day) compared to vehicle control. The mRNA expression of HAS isoform(HAS1, HAS2, HAS3), COL1A1, COL1A2, and TGF-𝛽1 were also significantly increased by UA. Conclusions : UA has skin moisturizing effects and enhancement activities in skin function related components(COL1, hyaluronan, ceramide and TGF-𝛽1). These results suggested that UA can be a developing candidate for developing alternative skin protective agent or functional food ingredient.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152

  • Rongrong Zhang ;Xinmiao Li ;Yuxiang Gao ;Qiqi Tao;Zhichao Lang;Yating Zhan;Chunxue Li;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.534-542
    • /
    • 2023
  • Background: Ginsenoside Rg1, a bioactive component of Ginseng, has demonstrated anti-inflammatory, anti-cancer, and hepatoprotective effects. It is known that the epithelial-mesenchymal transition (EMT) plays a key role in the activation of hepatic stellate cells (HSCs). Recently, Rg1 has been shown to reverse liver fibrosis by suppressing EMT, although the mechanism of Rg1-mediated anti-fibrosis effects is still largely unclear. Interestingly, Smad7, a negative regulator of the transforming growth factor β (TGF-β) pathway, is often methylated during liver fibrosis. Whether Smad7 methylation plays a vital role in the effects of Rg1 on liver fibrosis remains unclear. Methods: Anti-fibrosis effects were examined after Rg1 processing in vivo and in vitro. Smad7 expression, Smad7 methylation, and microRNA-152 (miR-152) levels were also analyzed. Results: Rg1 significantly reduced the liver fibrosis caused by carbon tetrachloride, and reduced collagen deposition was also observed. Rg1 also contributed to the suppression of collagenation and HSC reproduction in vitro. Rg1 caused EMT inactivation, reducing Desmin and increasing E-cadherin levels. Notably, the effect of Rg1 on HSC activation was mediated by the TGF-β pathway. Rg1 induced Smad7 expression and demethylation. The over-expression of DNA methyltransferase 1 (DNMT1) blocked the Rg1-mediated inhibition of Smad7 methylation, and miR-152 targeted DNMT1. Further experiments suggested that Rg1 repressed Smad7 methylation via miR-152-mediated DNMT1 inhibition. MiR-152 inhibition reversed the Rg1-induced promotion of Smad7 expression and demethylation. In addition, miR-152 silencing led to the inhibition of the Rg1-induced EMT inactivation. Conclusion: Rg1 inhibits HSC activation by epigenetically modulating Smad7 expression and at least by partly inhibiting EMT.

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang;Thi Hao Vu;Jubi Heo;Chaeeun Kim;Hyun S. Lillehoj;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.73.1-73.16
    • /
    • 2023
  • Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.

Anti-photoaging Effects of Flavonoid glycosides from shizophragma hydrangeoides (바위수국으로부터 분리한 플라보노이드 배당체의 광노화 예방 효과)

  • Sung Chun Kim;So Yeon Oh;Hyejin Hyeon;Yong-Hwan Jung;Young-Min Ham
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.25-25
    • /
    • 2022
  • 피부 노화는 피부와 피부 지지층 등의 광범위한 퇴행 과정을 말한다. 피부 노화의 원인은 흡연, 공해, 스트레스 등이 있지만, 그 중에서도 자외선(ultra violet, UV) 조사가 가장 큰 요인으로 꼽힌다. 반복적인 자외선 조사에 의해 진행되는 피부노화를 광노화라고 하며 그 가장 큰 특징으로는 콜라겐 섬유와 엘라스틴의 감소로 야기되는 주름을 들 수 있다. 본 연구에서는 제주에서 채집한 바위수국의 추출물 및 분획물의 항산화 및 자외선으로 인한 피부노화 예방(anti-photoaging) 효능을 확인하고, 활성물질을 분리하여 광노화 예방 효능과 그 메커니즘을 확인하였다. 실험에 사용된 바위수국은 범의귀과의 덩굴성 식물로 바위면이나 나무줄기 등에 붙어서 자라며, 한국(제주, 울릉도)과 일본에 분포한다. 바위수국 추출물과 분획물에서 총 페놀 함량. 총 플라보이드 함량, DPPH 및 ABTS 라디칼소거 활성의 항산화 실험 결과, 부탄올과 에틸아세테이트 분획층에서 강력한 항산화 활성이 관찰되었다. 또한 UVA를 조사한 인간 진피 섬유아세포 (human dermal fibroblast, HDF)데 대한 콜라겐 분해효소인 matrix metalloproteinase-1(MMP-1) 생성 억제 활성을 확인한 결과, 부탄올 분획층이 세포 생장 저해 없이 가장 우수한 효능이 확인되었다. 따라서 부탄올 분획층에서 주요 성분 분리 실험을 수행하여 총 4개의 화합물을 분리하였다; Chlorogenic acid (1), Quercetin-3-O-glucosyl-(1-2)-rhamnoside (2), Quercetin-3-O-xylosyl-(1-2)-rhamnoside (3), Quercitrin (4). 분리한 4개의 물질의 MMP-1 생성 억제 활성을 비교한 결과 화합물 2가 세포독성 없이 MMP-1 생성 억제 효능이 우수하였고, 이후 화합물 2의 광노화 예방 효능과 그 메커니즘을 확인하였다. 화합물 2는 MMP-1의 생성을 억제할 뿐만 아니라 procollagen type I의 생성을 증가시켰으며, MMP-1 생성에 관여하는 mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) 신호전달경로를 하향 조절하며, 콜라겐 생성과 관련된 Transforming growth factor-β (TGF-β)/Smad 신호전달경로를 상향 조절하여 UVA에 의한 광노화 예방에 효능을 나타내었다. 이러한 결과들을 바탕으로, 바위수국은 항노화(anti-aging) 기능성 화장품 및 이너뷰티 기능성 식품 소재로 개발이 가능할 것으로 기대된다.

  • PDF

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Mesenchymal Stem Cells Ameliorate Fibrosis by Enhancing Autophagy via Inhibiting Galectin-3/Akt/mTOR Pathway and by Alleviating the EMT via Inhibiting Galectin-3/Akt/GSK3β/Snail Pathway in NRK-52E Fibrosis

  • Yu Zhao;Chuan Guo;Lianlin Zeng;Jialing Li;Xia Liu;Yiwei Wang;Kun Zhao;Bo Chen
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.52-65
    • /
    • 2023
  • Background and Objectives: Epithelial-Mesenchymal transition (EMT) is one of the origins of myofibroblasts in renal interstitial fibrosis. Mesenchymal stem cells (MSCs) alleviating EMT has been proved, but the concrete mechanism is unclear. To explore the mechanism, serum-free MSCs conditioned medium (SF-MSCs-CM) was used to treat rat renal tubular epithelial cells (NRK-52E) fibrosis induced by transforming growth factor-β1 (TGF-β1) which ameliorated EMT. Methods and Results: Galectin-3 knockdown (Gal-3 KD) and overexpression (Gal-3 OE) lentiviral vectors were established and transfected into NRK-52E. NRK-52E fibrosis model was induced by TGF-β1 and treated with the SF-MSCs-CM for 24 h after modelling. Fibrosis and autophagy related indexes were detected by western blot and immunocytochemistry. In model group, the expressions of α-smooth muscle actin (α-SMA), fibronectin (FN), Galectin-3, Snail, Kim-1, and the ratios of P-Akt/Akt, P-GSK3β/GSK3β, P-PI3K/PI3K, P-mTOR/mTOR, TIMP1/MMP9, and LC3B-II/I were obviously increased, and E-Cadherin (E-cad) and P62 decreased significantly compared with control group. SF-MSCs-CM showed an opposite trend after treatment compared with model group. Whether in Gal-3 KD or Gal-3 OE NRK-52E cells, SF-MSCs-CM also showed similar trends. However, the effects of anti-fibrosis and enhanced autophagy in Gal-3 KD cells were more obvious than those in Gal-3 OE cells. Conclusions: SF-MSCs-CM probably alleviated the EMT via inhibiting Galectin-3/Akt/GSK3β/Snail pathway. Meanwhile, Gal-3 KD possibly enhanced autophagy via inhibiting Galectin-3/Akt/mTOR pathway, which synergistically ameliorated renal fibrosis. Targeting galectin-3 may be a potential target for the treatment of renal fibrosis.