• Title/Summary/Keyword: transformed cross-section

Search Result 43, Processing Time 0.026 seconds

Evaluation System for Color Filter Array (CFA) in Digital Camera (디지털 카메라에서 컬러 필터 어레이를 위한 평가 시스템)

  • Bae, Tae Wuk
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1741-1749
    • /
    • 2017
  • In commercial digital-cameras, color-filter filters light according to wavelength range of color filter array (CFA) and the filtered intensities contain color information of light. Then, output data of CFA is transformed to final rendered image through demosaicing process. In image processing of digital-camera, the quality of the final rendered image is affected by optical cross talk of CFA, kind of CFA pattern etc. Basically, pattern of CFA plays important role in image quality of final image rendered by digital-camera. Therefore, an evaluation system capable of quantitatively evaluating CFA is needed. This paper proposes a novel evaluation system using existing and proposed image metrics for evaluating CFAs of digital-camera. Proposed CFA evaluation system consist of color difference in CIELAB and S-CIELAB, Structure SImilarity (SSIM), MTF50, moire starting point (MSP), and subjective preference (SP). MSP and SP are newly designed for the proposed evaluation system. Proposed evaluation system is expressed in polar coordinates to analyze the characteristics of CFA objectively and intuitively. Through simulations, we confirmed that proposed CFA evaluation system can objectively assess performance of developed CFAs.

Vibration and Stability Analysis of Composite Spinning Shafts (복합재료 회전축의 진동 및 안정성 해석)

  • Seo, Jung-Seok;An, Chang-Gi;Park, Sang-Yoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.510-517
    • /
    • 2015
  • The free vibration and stability analysis of a spinning composite shaft modelled as a thin-walled closed beam is performed for several design parameters, such as ply angle, aspect ratio, and spin speed. The governing equations of spinning shafts based on the Timoshenko beam theory are derived via Hamilton's variational principle. Coriolis acceleration and anisotropy of constituent materials are incorporated in the derivation. The equations of motion are then transformed to the standard form of an eigenvalue problem for free vibration and stability analysis. Analytical results both for uniform circular cylindrical shaft and rectangular cross-section shaft are obtained by using extended Galerkin method, and the results are compared with those from FEM ANSYS analysis for a verification.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

Estimation of Dynamic Displacement and Characteristics of A Simple Beam from FBG Sensor Signals (FBG센서 응답을 이용한 단순보의 동적 변위 및 동특성 추정)

  • Choi, Eun Soo;Kang, Dong Hoon;Chung, Won Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.503-514
    • /
    • 2006
  • FBG sensors are capable of measuring the strain of structures easily and more durably than electric resistance gauges. Thus, many researches are dedicated to the application for the response monitoring or non-destructive evaluation of structures using FBG sensors. Additionally, the measured strains at the top and bottom of a cross-section can be transformed into the curvature of the section, which can be used to calculate its vertical displacement. Hence, this study aims to measure the dynamic strain signals of a steel section simply supported beam and to estimate the dynamic displacement from the strain signals, after which the estimated displacement is com pared with the measured displacement. The dynamic characteristics (natural frequency, damping ratio and mode shape) of the beam are predicted from both the estimated and measured displacement signals, and from the strain time history of the FBG sensors. The predicted properties are compared with those of an analytical model of the beam. The estimated displacement. However, the predicted dynamic properties from both the estimated displacements and the measured strains are well-correlated with those from the measured displacement. It is therefore appreciated that the estimation of the dynamic properties of FBG sensor signals is reasonable. Especially, the strain signal of the FBG sensor was amplified at a higher-frequency region in comparison with the displacement estimation with higher-mode properties.

Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution (LiBr 수용액으로 용해시켜 제조한 거대억새 홀로셀룰로오스 용해 및 재생 필름특성)

  • Yang, Ji-Wook;Kwon, Gu-Joong;Hwang, Kyo-Jung;Hwang, Won-Jung;Hwang, Jae-Hyun;Kim, Dae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.89-97
    • /
    • 2015
  • In this study, dissolution characteristics of 60% LiBr aqueous solution for Miscanthus sinensis holocellulose in accordance with heating time and characteristics of regenerated films were analyzed. Miscanthus sinensis holocellulose was made by peracetic acid method. During the dissolution of 60% LiBr solution for the holocellulose, the dissolution was started from the tip of the cellulose fiber after about 7 minutes, and proceeded as it swollen like a balloon. A lot of Si was identified by analyzing hollocellulose regenerated film through SEM/EDS. Cross section of regenerated film as dissolution time till 40 minutes of dissolution showed multilayered structure and fiber orientation. But after 40 minutes, multilayered structure and fiber orientation was not observed. The crystal structure of the holecellulose was transformed cellulose I into cellulose II. Therefore, dissolution for 20 minutes with 60% LiBr solution in the condition of $190^{\circ}C$ hot plate was shown as an optimum condition to manufacture the holocellulose regenerated film.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Cellulose Structures of Primary and Secondary Tissues in Pinus densiflora S. et Z. (소나무재의 1차조직과 2차조직 세포벽 중의 셀룰로오스 구조)

  • Kim, Nam-Hun;Lee, Kee-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.60-67
    • /
    • 2001
  • The microscopic characteristics and cellulose structures of primary and secondary tissues in Pinus densiflora S. et Z. were examined. Cells of primary tissue in cross section showed an irregular arrangement and round shape. Fiber lengths were 200 to $250{\mu}m$ in primary tissue, and 1,500 to $1,600{\mu}m$ in secondary tissue. Cell diameters in primary tissue were larger than those in secondary tissue; 40 to $50{\mu}m$ in former and 10 to $20{\mu}m$ in latter. Crystallite width and d-spacing of (200) in both tissues did not show any significant differences. However, crystallinity indices by Segal's method showed significant differences as 23% in primary tissue and 35% in secondary tissue. In the orientation of cellulose microfibril, primary tissues had a random pattern, whereas, secondary tissues presented an oriented pattern with 20 to 30 degree. The cellulose crystalline of primary tissue was easily transformed into cellulose II by mercerization, but that of secondary tissue hardly transformed. It is considered that the difference of crystal transformation in both tissues could be caused by the difference of lignification.

  • PDF

A Study on the Analysis of the Combustion Behavior and Carbonization Pattern of Vinyl Flooring on Which a Real-Scale Combustion Test Was Performed (실물 연소 실험이 진행된 비닐장판의 연소거동 및 탄화 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.120-125
    • /
    • 2019
  • A real-scale combustion test was conducted on a vinyl flooring in a divided space, with 50 mL of an inflammable liquid sprayed on it. The combustion behavior of the vinyl flooring was studied in real time, and the carbonization patterns of the surface and cross-sections of the carbonized vinyl floor were analyzed. When the flame ignited by gasoline reached its peak, a continuously flaming region, intermittent flaming region, plume region, etc., were formed. The combustion of 50 mL gasoline on vinyl flooring took 26 s, and a halo pattern was observed. This test involved spraying kerosene evenly on the vinyl flooring and attempting to ignite the flooring using a gas torch, which failed. After the combustion of the vinyl flooring was complete, its carbonized range was measured to be 600 mm in length and 380 mm in width, and the carbonized area was 1000 ㎟. Heat transformed the coated layer of surface of the carbonized vinyl flooring into a carbonized layer, which became harder. The analysis of cross-section of the boundary surface of the carbonized vinyl flooring using a stereoscopic microscope showed that the vinyl flooring was bubbling, and that the white boundary layer at the bottom of the coated layer had disappeared.

Developing the Electrode Board for Bio Phase Change Template (바이오 상변화 Template 위한 전극기판 개발)

  • Li, Xue Zhe;Yoon, Junglim;Lee, Dongbok;Kim, Sookyung;Kim, Ki-Bum;Park, Young June
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.715-719
    • /
    • 2009
  • The phase change electrode board for the bio-information detection through electrical property response of phase change material was developed in this study. We manufactured the electrode board using Aluminum first that is widely used in conventional semiconductor device process. Without further treatment, these aluminum electrodes tend to contain voids in PETEOS(plasma enhanced tetraethyoxysilane) material that are easily detected by cross-sectional SEM(Scanning Electron Microscope). The voids can be easily attacked and transformed into holes in between PETEOS and electrodes after etch back and washing process. In order to resolve this issue of Al electrode board, we developed a electrode board manufacturing method using low resistivity TiN, which has advantages in terms of the step-coverage of phase change($Ge_2Sb_2Te_5$, GST) thin film as well as thermodynamic stability, without etch back and washing process. This TiN material serves as the top and bottom electrode in PRAM(Phase-change Random Access Memory). The good connection between the TiN electrode and GST thin film was confirmed by observing the cross-section of TiN electrode board using SEM. The resistances of amorphous and crystalline GST thin film on TiN electrodes were also measured, and 1000 times difference between the amorphous and crystalline resistance of GST thin film was obtained, which is well enough for the signal detection.