• Title/Summary/Keyword: transformed callus

Search Result 58, Processing Time 0.022 seconds

Studies on the Induction of Transformation in Cereal Plants. III. Cultures and Regeneration of Rice Protoplasts Transferred Foreign Genes. (곡물류의 형질전환 유도에 관한 연구 III. 외래 유전자가 도입된 벼 원형질체의 배양 및 재분화)

  • Hwang, Baik;Hwang, Sung-Jin;Im, Hyong-Tak;Kang, Young-Hee
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.62-68
    • /
    • 1993
  • Transformed rice plantlet were recovered from protoplasts by electroporation with the plasmld pB 1121, which contain the plant expressible NPT-II and GUS genes. Embryonic cell suspension culture was established with embryonic callus induced from mature seeds of rice (Oryza sativa L. cv. Dong-jin) on the MS medium supplemented with 2.0 mg/l 2,4-D, 0.5 mg/l kinetin, 3% sucrose. Protoplasts isolated from embryonic cell suspensions were electroplated and then poterltialty-transformed tissues were selected by growth on the medium containing 200 mg/l kanamycin sulfate. When subjected to GUS assay, they stained blue, indicating the expression of the inserted GUS genes. Plantlets were regenerated from electroplated protoplasts on the hormone free MS medium. Transferred foreign genes in the plants were confirmed by southern hybridization. These results support use of electroporation for transformation of these important cereal plants.

  • PDF

Production of secondary metabolites by tissue culture of Artemisia annua L. (Artemisia annua L.의 조직배양을 이용한 이차대사 산물의 생산)

  • Kim, Nam-Cheol;Kim, Jeong-Gu;Lim, Hyung-Joon;Hahn, Tae-Ryong;Kim, Soo-Un
    • Applied Biological Chemistry
    • /
    • v.35 no.2
    • /
    • pp.99-105
    • /
    • 1992
  • Artemisia annua contains the antimalarial principle, artemisinin. The possibility of the production of this compound through tissue culture technique was studied. The optimum combinations of hormones for the induction of callus were p-chlorophenoxyacetic acid(pcPA) and 6-benzylaminopurine(BAP) or pcPA and N-isopentenylaminopurine(2iP) in 0.05 mg/l each. For the growth of callus, the same combination of pcPA and BAP was optimum in concentrations of $1.0\;{\mu}M\;and\;0.5\;{\mu}M$, respectively, and the optimal concentration of sucrose was also found to be 2%(w/v). Tissue culture from the crown gall grew faster than normal callus. In the suspension culture broth and the cells of normal callus or Agrobacterium-transformed tumors, arteannuic acid and 11,12-dihydroarteannuic acid were found together with common phytosterols, whereas artemisinin was not found.

  • PDF

An Effective Selection of PAT Gene Transformed Populus alba $\{times}$ Populus glandulosa No.3 using Herbicide Basta Treatment (제초제 Basta를 이용한 Phosphinothricin Acetyltransferase 유전자로 형질전환된 현사시 3호의 효율적인 선발)

  • 오경은;문흥규;박재인;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • This study was conducted to simple transformants selection by herbicide Basta treatment after transformation with Agrobacteium tumefaciens MP90/PAT in hybrid poplar(Populus alba ${\times}$ P. glandulosa No. 3). In preliminary study, we determined that the lethal concentration of herbicide Basta was 1.0mg/L in callus culture, adventitious bud formation and axillary bud elongation experiment. By the treatment of 1.0mg/L Basta, we could be selected the transformed shoots effectively from the various cultures. In addition, the treatment was useful on selection of transformants which are growing in soil pot. Finally, we also confirmed the transformation by PAT assay, Above results show that the herbicide Basta treatment and PAT assay can be a very simple and effective method for the identification of PAT gene transformed hybrid poplar.

Transient and Stable Transformation of Rice (Oryza sativa L.) Calli through Tissue Electroporation

  • Muniz de Pdua, Vnia L.;Mansur, E.
    • Journal of Plant Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.123-129
    • /
    • 2001
  • Electroporation of microcalli and embryonic axes of a Brazilian Indica rice cultivar was performed. Some parameters influencing the recovery of transformed callus have been defined through transient npt II expression. Such parameters included the presence of light during incubation of microcalli used as target for electroporation, heat shock at 45$^{\circ}C$, macerozyme pre-digestion of target tissues and the number of pulses during electroporation. Transgenic calli were obtained from embryonic axes after electroporation with plasmid pDM302, which encodes the gene phosphinotricin acetyl transferase (bar) under the control of Act-1 promoter. Integration of the introduced gene into the genome was demonstrated by Southern blot hybridization.

  • PDF

Herbicide Resistant Turfgrass(Zoysia japonica cv. 'Zenith') Plants by Particle bombardment-mediated Transformation

  • Lim Sun-Hyung;Kang Byung-Chorl;Shin Hong-Kyun
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • Transgenic zoysiagrass (Zoysia japonica cv. Zenith) plants have been obtained by particle bombardment of embryogenic callus with the plasmid pSMABuba, which contains hygromycin resistance (hpt) and bialaphos resistance (bar) genes. Parameters on DNA delivery efficiency of the particle bombardment were partially optimized using transient expression assay of a chimeric $\beta-glucuronidase$(gusA) gene driven by the CaMV 35S promoter. Stably transfarmed zoysiagrass plants were recovered with a selection scheme using hygromycin. Transgenic zoysiagrass plants were confirmed by PCR analysis with specific primer for bar gene. Expression of the transgene in transformed zoysiagrass plants was demonstrated by Reverse transcriptase (RT)-PCR analysis. All the tested transgenic plants showed herbicide BastaR resistance at the field application rate of $0.1\%-0.3\%$.

Micropropagation from Corm Apical Meristems Culture of Freesia refrecta Hybrida (정단 분열 조직배양에 의한 후리지아의 미세번식)

  • 고정애;김명준;김현순;이진재;김영숙
    • Korean Journal of Plant Resources
    • /
    • v.16 no.1
    • /
    • pp.34-39
    • /
    • 2003
  • Corm apical meristem cultures of thirteen glasshouse freesia cultivars were tested to investigate the possibility of micropropagation using MS basal medium supplemented with 2,4-D, NAA(0.1, 0.5, 1.0mg/L, respectively) and BA (0.5∼2.0mg/L). The majority of the tested cultivars could be induced callus and shoot buds in all culture condition. The combinations of NAA and BA appeared superior to that of 2,4-D and BA depending on cultivars for callus induction and shoot formation. Among the cultivars, 'Golden Yellow' showed the highest regeneration capacity on MS media with 0.5mg/L NAA and 1.0 mg/L BA. The highest percentage of regeneration and the greatest number of shoot from calli were obtained through successive subculture on MS medium supplimented with 0.5mg/L BA. In that condition, more than 60 % shoot regeneration and average of 25.1 shoots per explant was achieved. Transformed shoots on half-strength MS medium without plant growth regulators rooted easily.

An efficient protocol for the production of transgenic Alstroemeria plants via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.66-72
    • /
    • 2020
  • Alstroemeria plants were transformed by using an improved particle-gun-mediated transformation system. Friable embryogenic callus (FEC) induced from the leaves with axil tissues of Alstroemeria plant was used as the target tissue. Also, FEC was transformed with the bar gene was used as a selectable marker. In the case of plasmid pAHC25, 7.5% of the twice-bombarded FEC clumps showed blue foci, whereas the clumps with single bombardment showed only 2.3%. Additionally, a 90° rotation with double bombardment led to a higher frequency (6 times) of luciferase gene expression in PBL9780 than the control treatment. After 8 weeks of bombardment, more than 60 independent transgenic lines were obtained for pAHC25 and nearly 150 independent transgenic lines were obtained for PBL9780, all of which were resistant to PPT and demonstrated either GUS or luciferase activity. Regarding effect of osmotic treatment (0.2 M mannitol) with 7 different periods, the highest transient gene expression was obtained in 8 h before and 16 h after transformation in both pAHC25 and PBL9780. Compared with the control, at least three times more GUS foci and photons were observed in this treatment. With respect to different combinations of mannitol and sorbitol with 8 h before and 16 h after transformation, high numbers of transient and stable transgene expressions were observed in both 0.2 M mannitol and 0.2 M sorbitol used in the osmotic pre-culture. This combination showed the highest transformation efficiency in both pAHC25 (8.5%) and PBL9780 (14.5%). In the control treatment, only 10% of the FEC clumps produced somatic embryos. However, by using 0.2 M mannitol and 0.2 M sorbitol, the frequency of somatic embryos increased to 36.5% (pAHC25) and 22.9% (PBL9780). Of the somatic embryos produced, at least 60% germinated. Approximately 100 somatic embryos from these 210 independent transgenic lines from 2 plasmids developed into shoots, which were then transferred to the greenhouse. PCR analysis confirmed the presence of the bar gene. This is the report on the production of transgenic Alstroemeria plants by using particle bombardment with a high efficiency, thereby providing a new alternative for the transferring of gene of interests in Alstroemeria in the breeding program in the future.

Differential Response to Growth Regulator of Tobacco Crown Gall Tumor and Genetic Tumor (연초 Crown Gall Tumor 와 Genetic Tumor의 식물호르몬에 대한 분화반응)

  • 양덕춘;정재훈;민병훈;최광태;이정명
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • Morphological characteristic during formation of tobacco crown gall tumor and genetic tumor, and their differential response to growth regulator were investigated in in vitro culture. Crown gall tumor was induced from tumor tissue transformed by infecting Agrobacterium tumefaciens C58. Genetic tumor was induced from tumor tissue which was induced spontaneously from reciprocal interspecific hybrids between Nicotiana glauca (2n=24) and Nicotiana langsdorffii (2n=18). Morphological characteristic of crown gall tumor, genetic tumor, and teratoma shoot was very similar, and they were actively proliferated on hormone-free medium. Typical tumor callus and teratoma shoot formed from crown gall tumor on the hormone-free medium. On the contrary, tumor callus derived from genetic tumor formed as a crown gall tumor callus on the medium supplemented with 0.5 mg/L of 2,4-D, and lots of teratoma shoots without any root formed on the hormone-free medium. Root development from the teratoma shoots was hardly obtained on the medium with IAA, GA and active carbon. However, teratoma shoots with roots, as normal shoots, were initiated occasionally on the hormone-free medium. These shoots also formed new genetic tumor on the stem, which leaves formed lots of teratoma shoot on the hormone-free medium in in vitro culture.

  • PDF

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Production of miraculin protein in suspension cell lines of transgenic rice using Agrobacterium (Agrobacterium을 이용한 형질전환 벼 현탁 세포주에서 miraculin 단백질의 생산)

  • Kim, Hee Kyoung;Go, Ji Yun;Park, So-Young;Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • To produce the miraculin protein in suspension cultures, rice (Oryza sativa L.) was transformed with Agrobacterium tumefacience EHA105 containing the miraculin AB512278 gene. The cell suspension cultures were established using cell lines selected from transgenic rice callus. The integration of the miraculin gene into the rice chromosome was confirmed using genomic PCR analysis. In addition, RT-PCR analysis indicated that the miraculin gene is expressed in the selected suspension cell lines. Thus, the recombinant miraculin was expressed in the transgenic suspension cell line, HK-2. Therefore, we have successfully developed a HK-2 line that produces miraculin. These results demonstrate that transformed cell suspension cultures can be used to produce a taste-modifying protein such as miraculin.