• Title/Summary/Keyword: transformation models

Search Result 519, Processing Time 0.027 seconds

Teaching-Learning Method for Plane Transformation Geometry with Mathematica (평면변환기하에 있어서 Mathematica를 이용한 교수-학습방법)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2001
  • The world we live in is called the age of information. Thus communication and computers are doing the central role in it. When one studies the mathematical problem, the use of tools such as computers, calculators and technology is available for all students, and then students are actively engaged in reasoning, communicating, problem solving, and making connections with mathematics, between mathematics and other disciplines. The use of technology extends to include computer algebra systems, spreadsheets, dynamic geometry software and the Internet and help active learning of students by analyzing data and realizing mathematical models visually. In this paper, we explain concepts of transformation, linear transformation, congruence transformation and homothety, and introduce interesting, meaningful and visual models for teaching of a plane transformation geomeoy which are obtained by using Mathematica. Moreover, this study will show how to visualize linear transformation for student's better understanding in teaching a plane transformation geometry in classroom. New development of these kinds of teaching-learning methods can simulate student's curiosity about mathematics and their interest. Therefore these models will give teachers the active teaching and also give students the successful loaming for obtaining the concept of linear transformation.

  • PDF

Validation Comparison of Credit Rating Models Using Box-Cox Transformation

  • Hong, Chong-Sun;Choi, Jeong-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.789-800
    • /
    • 2008
  • Current credit evaluation models based on financial data make use of smoothing estimated default ratios which are transformed from each financial variable. In this work, some problems of the credit evaluation models developed by financial experts are discussed and we propose improved credit evaluation models based on the stepwise variable selection method and Box-Cox transformed data whose distribution is much skewed to the right. After comparing goodness-of-fit tests of these models, the validation of the credit evaluation models using statistical methods such as the stepwise variable selection method and Box-Cox transformation function is explained.

  • PDF

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF

Study on predictive model and mechanism analysis for martensite transformation temperatures through explainable artificial intelligence (설명가능한 인공지능을 통한 마르텐사이트 변태 온도 예측 모델 및 거동 분석 연구)

  • Junhyub Jeon;Seung Bae Son;Jae-Gil Jung;Seok-Jae Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • Martensite volume fraction significantly affects the mechanical properties of alloy steels. Martensite start temperature (Ms), transformation temperature for martensite 50 vol.% (M50), and transformation temperature for martensite 90 vol.% (M90) are important transformation temperatures to control the martensite phase fraction. Several researchers proposed empirical equations and machine learning models to predict the Ms temperature. These numerical approaches can easily predict the Ms temperature without additional experiment and cost. However, to control martensite phase fraction more precisely, we need to reduce prediction error of the Ms model and propose prediction models for other martensite transformation temperatures (M50, M90). In the present study, machine learning model was applied to suggest the predictive model for the Ms, M50, M90 temperatures. To explain prediction mechanisms and suggest feature importance on martensite transformation temperature of machine learning models, the explainable artificial intelligence (XAI) is employed. Random forest regression (RFR) showed the best performance for predicting the Ms, M50, M90 temperatures using different machine learning models. The feature importance was proposed and the prediction mechanisms were discussed by XAI.

SDINS Equivalent Error Models Using the Lyapunov Transformation (Lyapunov 변환을 이용한 SDINS 등가 오차모델)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.167-177
    • /
    • 2002
  • In Strapdown Inertial Navigation System(SDINS), error models based on previously proposed conversion equations between the attitude errors, are only valid in case the attitude errors are small. The SDINS error models have been independently studied according to the definition of the reference frame and of the attitude error. The conversion equations between the attitude errors applicable to SDINS with large attitude errors are newly derived. Lyapunov transformation matrices are also derived from the obtained results. Furthermore the general method, which is independent of the attitude error and the reference frame to derive SDINS error model, is proposed using the Lyapunov transformation.

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula (가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • We study estimation and inference of joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. We consider a class of time-varying transformation models and combine the two marginal models using Gaussian copulas to estimate the joint models. Our models and estimation method can be applied in many situations where the conditional mean-based models are inadequate. Gaussian copulas combined with time-varying transformation models may allow convenient and easy-to-interpret modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Generalized linear models versus data transformation for the analysis of taguchi experiment (다구찌 실험분석에 있어서 일반화선형모형 대 자료변환)

  • 이영조
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.253-263
    • /
    • 1993
  • Recent interest in Taguchi's methods have led to developments of joint modelling of the mean and dispersion in generalized linear models. Since a single data transformation cannot produce all the necessary conditions for an analysis, for the analysis of the Taguchi data, the use of the generalized linear models is preferred to a commonly used data transformation method. In this paper, we will illustrate this point and provide GLIM macros to implement the joint modelling of the mean and dispersion in generalized linear models.

  • PDF

Geometrical Defect Detection of Secondary Battery Using 3-Dimensional CAD Model (3D CAD 모델을 이용한 이차 전지의 형상 결함 검출)

  • Yeong-Ho Jo;Keun-Ho Rew;Sang-Yul Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.6
    • /
    • pp.135-144
    • /
    • 2022
  • In this study, we transformed 4680 type lithium-ion batteries to 3-dimensional CAD models and present a methodology to detect defects using Radon inverse transformation. Transparency was applied to the model to make it look like a CT image when viewed from the front. One normal and three defect models were created and analyzed. The models were saved as image files while rotating at a certain angle. Then, we used the Radon inverse transformation to reconstruct the original 3D geometry from the image files. Finally, we successfully found defects in the defect models for three cases.

Asymptotics in Transformed ARMA Models

  • Yeo, In-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper, asymptotic results are investigated when a parametric transformation is applied to ARMA models. The conditions are determined to ensure the strong consistency and the asymptotic normality of maximum likelihood estimators and the correct coverage probability of the forecast interval obtained by the transformation and backtransformation approach.

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.