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Abstract
In this paper, asymptotic results are investigated when a parametric transformation is applied to ARMA mod-

els. The conditions are determined to ensure the strong consistency and the asymptotic normality of maximum
likelihood estimators and the correct coverage probability of the forecast interval obtained by the transformation
and backtransformation approach.
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1. Introduction

In time series analysis based on the autoregressive moving average(ARMA) models, it is usually
assumed that error terms are normally distributed. However, as shown by Fama (1965), Li (1999),
McCulloch (1996), and McDonald (1996), many financial time series tend to be heavy-tailed or highly
skewed, especially to the left. This implies that the possibility of observing outliers is higher than that
under normal assumption. Statistical inferences under the normal assumption are generally based on
the sample mean and sample variance. It is well known that these quantities are not robust against
outliers. In the forecast of financial time series, lower or upper quantiles play an important role to
measure the value at risk for the risk management. These quantiles also are mainly influenced by
the shape of the underlying distribution. Therefore, alternative models are requested to overcome the
violation of the normality.

Generally, two approaches are used to solve the non-normality problem in real analysis based on
ARMA models. The first approach is that alternative distributions are assumed for error terms. For
instance t-distribution or normal mixture distribution. This approach is often applied to data that are
symmetric but have heavy tails on both sides. The generalized error distribution of Nelson (1991) or
skewed Student t-distribution can be employed for modeling asymmetric data; however, it is not easy
to perform statistical inferences under these distributions. The other method is the classical normal
techniques applied to transformed data which are approximately normally distributed. This approach
is relatively easy to apply, especially in skewed cases.

In this paper, we investigate asymptotic results when a parametric transformation is applied to
the ARMA model. Conditions are specified that ensure the strong consistency and the asymptotic
normality of maximum likelihood estimators(MLE) and the correct coverage probability of prediction
interval by Cho et al. (2007). The asymptotics derived in this paper are the extension of results proved
by Cho et al. (2001a) and Cho et al. (2001b) in the Box-Cox transformed linear models.
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2. Estimation in Transformed ARMA Models

Let h(x, λ) be a general class of transformations which are indexed by the transformation parameter
λ. A typical example of h(x, λ) is Box and Cox (1964) transformation that takes the form as follows,
for x > 0

h(x, λ) =


xλ − 1
λ

, λ , 0,

log(x), λ = 0.

Other examples are John and Draper (1980), Burbidge et al. (1988), and Yeo and Johnson (2000).
Since the transformation-and-backtransformation approach is frequently applied to predict a future
value in the original scale, it is required that h(x, λ) is monotone in x and so inverting the transforma-
tion is available. Throughout this paper, we assume that the second derivative of h(x, λ) with respect
to x is continuous in λ. This assumption plays a key role to derive asymptotic results based on the
maximum likelihood inference.

Suppose that time series {Xt}nt=1 follow a stationary ARMA process with the mean µ. Then, the
model equation is written as

Φ(B)(Xt − µ) = Θ(B)εt, t = 1, 2, . . . , n,
Φ(B) = 1 − ϕ1B − · · · − ϕpBp,

Θ(B) = 1 − θ1B − · · · − θqBq,

where B stands for the back-shift operator and εt is a white noise. It is usually assumed that the white
noise εt is normally distributed with a constant variance. However, it is unlike to see that a set of
data on the original scale satisfies the normality assumption. A common characteristic of real data,
especially financial time series is that their distribution is heavy-tailed or skewed. This implies that
the possibility of observing outliers is higher than we expect. It is well-known that the maximum
likelihood estimates are not robust against outliers.

When the normality assumption is seriously violated, one of the common approaches is that we
take a transformation so that the transformed data are approximately normal and then apply the clas-
sical normal techniques to the transformed data. This approach is relatively easy to handle, especially
in skewed cases. In this paper, we assume that the transformed time series {h(Xt, λ)}nt=1 follow a
stationary Gaussian ARMA(p, q) process with the mean ν. Then,

Φ(B) {h(Xt, λ) − ν} = Θ(B)ϵt, (2.1)

where error terms ϵt’s are independent and distributed as N(0, σ2). Rewriting (2.1) as

ϵt = {1 − Θ(B)} ϵt + Φ(B) {h(Xt, λ) − ν} , (2.2)

the log-likelihood function of the parameters ξ = (ϕ, θ, ν, σ2, λ) is

L(ξ; x) = −n
2

log
(
σ2

)
− 1

2σ2

n∑
t=1

ϵ2
t +

n∑
t=1

log{J(xt, λ)},

where J(xt, λ) = |∂h(xt, λ)/∂xt | denotes the Jacobian term. In this paper, we estimate the parameters
via the conditional log-likelihood function which is written as

Lc(ξ; x) = −n − p
2

log
(
σ2

)
− 1

2σ2

n∑
t=p+1

ϵ2
t +

n∑
t=p+1

log{J(xt, λ)}. (2.3)
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Holding λ fixed, we initially obtain the estimates (ϕ̂(λ), θ̂(λ), ν̂(λ)) maximizing Lc(ξ; x) with respect
to (ϕ, θ, ν) and then compute

σ̂2(λ) =
1

n − p

n∑
t=p+1

ϵ2
t

(
ϕ̂(λ), θ̂(λ), ν̂(λ)

)
where ϵt(ϕ̂(λ), θ̂(λ), ν̂(λ)) is defined as (2.2) of which the parameters are replaced by the estimates
(ϕ̂(λ), θ̂(λ), ν̂(λ)). The MLE λ̂ is obtained by maximizing the conditional profile likelihood func-
tion obtained by substituting (ϕ̂(λ), θ̂(λ), ν̂(λ), σ̂2(λ)) into (2.3). Consequently, the MLE of ξ is
ξ̂ = (ϕ̂(λ̂), θ̂(λ̂), ν̂(λ̂), σ̂2(λ̂), λ̂).

Lemma 1. Let Y1,Y2, . . . , be a sequence of stationary processes on R. Let Ξ be a compact topolog-
ical space, and let f be a complex-valued function on Ξ × R and measurable in z for each ξ ∈ Ξ.
Assume that

(i) there is a function φ such that | f (ξ, y)| < φ(y) for all ξ ∈ Ξ and E {φ(Y)} < ∞,

(ii) there exists a sequence S M of measurable sets such that P[Y ∈ (R − ∪∞M=1S M)] = 0,

(iii) for each M, f (ξ, y) is equicontinuous in ξ for y ∈ S M .

Then n−1 ∑n
i=1 f (ξ, Yi)

a.s.−→ E
[
f (ξ, Y)

]
uniformly in ξ ∈ Ξ and E

[
f (ξ, Y)

]
is continuous.

Proof: The result is derived by applying the ergodic theorem to the uniform convergence of Rubin
(1956). �

Lemma 2. Let {Gn(·)} be a sequence of random functions defined on a probability space and depend
on ξ in compact set Ξ. Suppose that

(i) there exist a continuous function G(ξ) defined on Ξ such that Gn(ξ)
a.s.−→ G(ξ) uniformly in ξ ∈ Ξ,

(ii) G(ξ) has a unique minimum at ξ0 ∈ Ξ.

Then, ξ̂n = arg min Gn(ξ) is a strongly consistent estimator of ξ0.

Since Lemma 2 is a standard result, we omit the proof.

Theorem 1. Suppose the parameter space

Ξ = {(ϕ, θ, ν, σ2, λ) |ϕ ∈ Ξϕ, θ ∈ Ξθ, ν ∈ Ξν, σ2 ∈ Ξσ, λ ∈ Ξλ}

and the log-likelihood function Lc(ξ; X) satisfy the following conditions;

(i) the parameter space Ξ is compact,

(ii) E[h(X, λ)2] and E[ ∂
∂X h(X, λ)] are finite for all λ ∈ Ξλ,

(iii) Π(ξ) = E
[
Lc(ξ; X)

]
has a unique global maximum at ξ0 ∈ Ξ.

Then, for finite p,

(A) limn→∞{supξ∈Ξ(n − p)−1Lc(ξ; X)} = supξ∈Ξ Π(ξ) with probability one,
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(B) the MLE ξ̂ ∈ Ξ is a strongly consistent estimator of ξ0.

Proof: For simple notation, let

L1(ξ; xt) = −
1
2

log
(
σ2

)
− ϵ

2
t (ϕ(λ), θ(λ), λ)

2σ2 + log {J(xt, λ)} .

Boundary conditions of assumptions (i) and (ii) guarantee that E
[
L1(ξ; Xt)

]
is finite. Since L1(ξ; x) is

continuous in (ξ, x) over the compact set Ξ × S M where S M = [−M,M], L1(ξ; x) is equicontinuous in
ξ for x ∈ S M , see Kosmala (1995), and, by Lemma 1, we conclude that (n− p)−1Lc(ξ; X)−Π(ξ)

a.s.−→ 0
uniformly in ξ ∈ Ξ. Equivalently,

lim
n→∞

sup
ξ∈Ξ

∣∣∣(n − p)−1Lc(ξ; X) − Π(ξ)
∣∣∣ = 0

with probability one. The result (A) follows directly since∣∣∣∣∣∣∣sup
ξ∈Ξ

(n − p)−1Lc(ξ; X) − sup
ξ∈Ξ
Π(ξ)

∣∣∣∣∣∣∣ ≤ sup
ξ∈Ξ

∣∣∣(n − p)−1Lc(ξ; X) − Π(ξ)
∣∣∣ .

From the continuity of Π(ξ) by Lemma 1, the result (A), and the assumption (iii), the proof of the
result (B) is straightforward. �
Theorem 2. Suppose the conditions of Theorem 1 hold. Furthermore, if

(iv) ξ0 is an interior point of Ξ.

(v) E[( ∂
∂λ

h(X, λ))2] and E[ ∂2

∂λ∂X h(X, λ)] are finite for all λ ∈ Ξλ
(vi) E[∇Lc(ξ0; X)] = 0, where the column vector ∇Lc(ξ0; X) is the gradient of the log-likelihood

function evaluated at ξ0,

(vii) E[∇2Lc(ξ0; X)] is non-singular, where ∇2Lc(ξ0; X) is the Hessian of the log-likelihood function
evaluated at ξ0. Then

(C)
√

n
(
ξ̂ − ξ0

) L−→ N
(
0,W−1(ξ0)

)
(2.4)

where W(ξ0) = −E[∇2L1(ξ0; Xt)].

Proof: Expanding (n − p)−1/2∇Lc(ξ̂; X) about ξ0, we obtain that

1
√

n − p
∇Lc

(
ξ̂; X

)
=

1
√

n − p
∇Lc

(
ξ0; X

)
+

1√
n(n − p)

∇2Lc
(
ξ∗; X

) √
n
(
ξ̂ − ξ0

)
, (2.5)

where ξ∗ = cnξ̂ + (1− cn)ξ0, cn ∈ (0, 1) for n ≥ 1. Since ∇Lc(ξ̂; X) = 0 at the maximum, the left hand
size of (2.5) converages to zero in probability. By the central limit theorem in Gaussian stationary
time series, see Dunsmuir (1983), (n − p)−1/2∇Lc(ξ0; X) is asymptotically normal with mean 0 and
variance W(ξ0). Further, another application of Lemma 1 and the consistency of ξ̂ ensure that

− 1√
n(n − p)

∇2Lc(ξ∗; X)
p
−→ −E

[
∇2L1(ξ0; X)

]
=W(ξ0).

Consequently,
√

n(ξ̂ − ξ0
L−→ N(0,W−1(ξ0)) �
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3. Forecast Interval in Transformed ARMA Models

One of main goals in time series analysis is to forecast future values. The mean square error(MSE)
is a common criterion to choose an optimum forecast. Let {Zt}nt=1 follow a stationary ARMA(p, q)
process with mean ν and let Zn(l) denote the l-step ahead forecast at time n. The MSE of the l-
step ahead forecast at time n is Et[(Zn+l − Zn(l))2] and the minimum MSE forecast is represented by
the conditional expectation Zn(l) = E[Zn+l | Zn,Zn−1, . . .]. Under the stationary process assumption,
ARMA(p, q) process is written as the following moving average representation,

Zt = ν + Ψ(B)εt = ν +

∞∑
j=0

ψ jB jϵt,

where Ψ(B) = Θ(B)/Φ(B) and ψ0 = 1. Then,

Zn(l) = E (Zn+l | Zn,Zn−1, . . . ) = µ +
∞∑
j=l

ψ jϵn+l− j

and the forecast error is en(l) = Zn+l − Zn(l) =
∑l−1

j=0 ψ jϵn+l− j. Suppose ϵt is Gaussian white noise with
variance σ2. Then, the conditional distribution of Zn+l given {Zt}nt=1 is N(Zn(l), σ2 ∑l−1

j=0 ψ
2
j ) and the

100(1 − α)% forecast interval for Zn+l is estimated as follows;

Ẑn(l) ± z α
2
σ̂

√√√ l−1∑
j=0

ψ̂2
j , (3.1)

where Ẑn(l) is obtained by replacing parameters by estimators in Zn(l) and zα denotes the (1 − α)th

quantile of the standard normal distribution.
Cho et al. (2007) investigated the estimation of forecast intervals based on the transformation-

and-backtransformation approach in the ARMA model and showed that the coverage probabilities
of their forecast intervals are closer to the nominal level than those of the forecast interval without
transformation through a simulation study. In this paper, we provide a theoretical validation of the
forecast interval estimation the via the transformation and backtransformation approach.

Replacing components of (3.1) by ξ̂ and the forecast on the transformed scale, we obtain the
100(1 − α)% forecast interval on the transformed scale as follows;

ĥ
(
Xn, λ̂

)
(l) ± z α

2
σ̂

(
λ̂
) √√√ l−1∑

j=0

ψ̂2
j

(
λ̂
)
.

Let L(ξ̂) and U(ξ̂) be the lower and the upper bound of estimated forecast interval, respectively, on
the transformed scale. Then, forecast interval (L∗(ξ̂),U∗(ξ̂)) on the original scale is given as L∗(ξ̂) =
h−1(L(ξ̂), λ̂), U∗(ξ̂) = h−1(U(ξ̂), λ̂).

In order to find an asymptotic forecast interval for a future value, we consider the following quan-
tity

T (l)
n (λ) =

h(Xn+l, λ) − ĥ(Xn, λ)(l)

σ̂(λ)
√∑l−1

j=0 ψ̂
2
j (λ)

,
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Lemma 3. Suppose the conditions of Theorem 1 hold. Then, the limiting distribution of T (l)
n (λ) is the

same as the distribution of

T (l)(λ) =

∑l−1
j=0 ψ j(λ)ϵn+l− j

σ(λ)
√∑l−1

j=0 ψ
2
j (λ)

.

Proof: Note that T (l)
n (λ) is decomposed as follows;

T (l)
n (λ) =

h(Xn+l, λ) − h(Xn, λ)(l)

σ̂(λ)
√∑l−1

j=0 ψ̂
2
j (λ)

+
h(Xn, λ)(l) − ĥ(Xn, λ)(l)

σ̂(λ)
√∑l−1

j=0 ψ̂
2
j (λ)

. (3.2)

Since ĥ(Xn, λ)(l) is a function of (ϕ̂, θ̂, ν̂, λ) and the uniform convergency of Theorem 1 for ξ̂ can
be applied, the second term of right hand side of (3.2) converges to zero and the denominator of the

second term converages to σ(λ)
√∑l−1

j=0 ψ
2
j (λ). �

Note that, for Gaussian white noises with variance σ2(λ), the distribution of T (λ) is the standard
normal distribution.

Theorem 3. Suppose the conditions in Theorem 1 and Theorem 2 hold. Then, L∗(ξ̂) = h−1(L(ξ̂), λ̂)
and U∗(ξ̂) = h−1(U(ξ̂), λ̂) give an asymptotically correct forecast interval for the l-step ahead future
value Xn+l.

Proof: A Taylor expansion gives

T (l)
n

(
λ̂
)
= T (l)

n (λ0) +
(
λ̂ − λ0

) d
dλ

T (l)
n (λ)

∣∣∣∣∣
λ=λ∗

, (3.3)

where |λ∗ − λ0| ≤ |λ̂ − λ0|. The condition (v) of Theorem 2 ensures that d
dλT (l)

n (λ)
∣∣∣
λ=λ∗

is bounded in
probability. Since λ̂ uniformly converges to λ0 with probability one, the second term of right hand
side of (3.3) converges to zero and T (l)

n (λ̂) has the same limiting distribution as T (l)(λ0), that is N(0, 1).
This implies that

lim
n→∞

P
[
−z α

2
≤ T (l)

n

(
λ̂
)
≤ z α

2

]
= 1 − α

and

lim
n→∞

P
[
L
(
ξ̂
)
≤ h

(
Xn+1, λ̂

)
≤ U

(
ξ̂
)]
= 1 − α.

Since transformation h(x, λ) is monotone in x, applying the inverse transformation, we obtain

lim
n→∞

P
[
h−1

(
L
(
ξ̂
)
, λ̂

)
≤ Xn+l ≤ h−1

(
U

(
ξ̂
)
, λ̂

)]
= 1 − α.

�
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