Huffman, Park and Skoug introduced various results for the $L_{p}$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra $\mathcal{S}$ introduced by Cameron and Storvick. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class $\mathcal{F}(B)$ which corresponds to $\mathcal{S}$. Moreover they introduced the $L_{p}$ analytic Fourier-Feynman transform for functionals on a product abstract Wiener space and then established the above results for functionals in the generalized Fresnel class $\mathcal{F}_{A1,A2}$ containing $\mathcal{F}(B)$. In this paper, we investigate more generalized relationships, between the Fourier-Feynman transform and the convolution product for functionals in $\mathcal{F}_{A1,A2}$, than the above results.
This paper is on the blind signal separation(BSS) method by the geometric method. To separate the signal sources, we use Hough transform and BSS. Hough transform is a geometric method which let us know the local informations of the signal. We find the orientations of signals by Hough transform and know the number of signal sources. When the number of sensors is more than the number of sources. the BSS algorithm can separate the mixtures well in the time domain. This algorithm has a good performance in converging fast. We had checked up the quality of the algorithm after separating the mixed signals. The results of simulations show that this BSS method has the abnormal waveforms due to unconverging coefficients in the beginning, and stably has the separated waveforms which almost equal to the sources in the most period.
The Wavelet Transform providing both of the frequency and time information of an image is proved to be very much effective for the compression of images, and recently lot of studies on coding algorithms for images decomposed by the wavelet transform together with the multiresolution theory are going on. This paper proposes a Quadtree decompositon method of image compression applied to the images decomposed by wavelet transform by using the correlations between pixels .Since the coefficients obtained by the wavelet transform have high correlations between scales, the Quadtree method can reduce the data quantity effectively The experimental image with 256${\times}$256 size was used to compare the Performances of the existing and the proposed compression methods.
IEIE Transactions on Smart Processing and Computing
/
제5권5호
/
pp.323-326
/
2016
High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.
Wavelet transforms are introduced as a new tool to distinguish real peaks from the noise contaminated NMR data in this paper. New algorithms of two wavelet transforms including Daubechies wavelet transform as a discrete and orthogonal wavelet transform (DWT) and Morlet wavelet transform as a continuous and nonorthogonal wavelet transform(CWT) were developed fer noise elimination. DWT and CWT method were successfully applied to the noise reduction in spectrum. The inevitable distortion of NMR spectral baseline and the imperfection in noise elimination were observed in DWT method while CWT method gives a better baseline ahape and a well noise suppressed spectrum.
본 논문에서는 웨이브렛을 이용한 두 가지 새로운 잡음 제거 방법으로, 공간적 상관관계를 이용한 NSSNF(new spatially selective noise filtration)과 threshold에 기초한 UDWT(undecimated discrete wavelet transform)을 제시한다. NSSNF에서는 기존의 SSNF에 새로운 파라메타를 추가하여, 융통성 있는 SNR 이득 특성을 얻도록 하였으며, UDWT에서는 hard-threshold를 적용하여, 기존의 soft-threshold를 적용한 OWT(orthogonal wavelet transform)보다 우수한 잡음 제거 효과를 얻도록 하였다. 이러한 테스트 환경으로는 AWGN을 선택하였으며, 개선 효과의 판단 기준으로 SNR을 사용하여, 기존의 잡음 제거 방법과 비교 분석하였다.
Amplitude-only logarithmic Radon transform (ALR transform) for pattern matching is proposed. This method provides robustness for object translation, scaling, and rotation. An ALR image is invariant even if objects are translated in a picture. For the object scaling and rotation, the ALR image is merely translated. The objects are identified using a phase-only matched filter to the ALR image. The ratio of size, the difference of rotation angle, and the position between the two objects are detected. Our pattern matching procedure is described, herein, and its simulation is executed. We compare matching scores with the Fourier-Mellin transform, and the general phase-only matched filter.
Computer-Generated Hologram (CGH) is generally made by Fourier Transform. CGH is made by an optical reconstruction. Computer-Generated Pseudo Hologram (CGPH) is made up Complex Hadamard Transform instead of CGH which is made by the Fourier Transform. CGPH differs from CGH in point of view the possibility of optical reconstruction. There is an advantage that it cannot be optical reconstruction, in other word, physical leakage of the confidential information is impossible. In this paper, a binary image was converted in Complex Hadamard Transform, and CGPH was made. Improvement of the reconstructed image from CGPH is done by error diffusion method and iterative method. The result that the reconstructed image is improved is shown.
본 논문에서는 동영상 데이터베이스에서 Key-frame을 검색하는 방법을 제안한다. 본 논문에서는 Key-frame을 검색하기위해 컬러 피쳐를 공간영역에서 추출하지 않고 wavelet transform 영역에서 컬러 피쳐를 추출하는 방법을 제안한다. wavelet transform 의 저주파 밴드는 영상전체의 특징을 잘 나타내고 고주파 밴드는 texture 와 국부적인 컬러 특성을 잘 나타낸다. 색인과정 알고리즘은 영상의 크기를 정규화하고 RGB 컬러공간에서 HSV 컬러 공간으로 변환을 하여, H, S, V 각 채널에 대해 Daubechies' wavelet transform을 수행한 후 변환 영역에서 피쳐를 추출하게 된다. 색인을 위한 피쳐로 wavelet 계수와 lowest 밴드의 평균과 표준편차를 추출하였다. 효율적인 검색을 위해 검색은 2단계로 수행된다. 먼저 평균과 표준편차만을 이용한 1차 검색을 통해 2차 검색의 후보 영상들을 추출하고 2차 검색에서는 1차 검색 통과 영상들에 대해서만 wavelet 계수들을 비교하여 최종 검색 결과를 얻게 된다. 검색결과 기존의 컬러 피쳐를 이용한 방법보다 우수한 검색결과를 얻을 수 있었다.
A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.