• Title/Summary/Keyword: transfer of learning

Search Result 755, Processing Time 0.026 seconds

Mid-level Feature Extraction Method Based Transfer Learning to Small-Scale Dataset of Medical Images with Visualizing Analysis

  • Lee, Dong-Ho;Li, Yan;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1293-1308
    • /
    • 2020
  • In fine-tuning-based transfer learning, the size of the dataset may affect learning accuracy. When a dataset scale is small, fine-tuning-based transfer-learning methods use high computing costs, similar to a large-scale dataset. We propose a mid-level feature extractor that retrains only the mid-level convolutional layers, resulting in increased efficiency and reduced computing costs. This mid-level feature extractor is likely to provide an effective alternative in training a small-scale medical image dataset. The performance of the mid-level feature extractor is compared with the performance of low- and high-level feature extractors, as well as the fine-tuning method. First, the mid-level feature extractor takes a shorter time to converge than other methods do. Second, it shows good accuracy in validation loss evaluation. Third, it obtains an area under the ROC curve (AUC) of 0.87 in an untrained test dataset that is very different from the training dataset. Fourth, it extracts more clear feature maps about shape and part of the chest in the X-ray than fine-tuning method.

Proper Base-model and Optimizer Combination Improves Transfer Learning Performance for Ultrasound Breast Cancer Classification (다단계 전이 학습을 이용한 유방암 초음파 영상 분류 응용)

  • Ayana, Gelan;Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.655-657
    • /
    • 2021
  • It is challenging to find breast ultrasound image training dataset to develop an accurate machine learning model due to various regulations, personal information issues, and expensiveness of acquiring the images. However, studies targeting transfer learning for ultrasound breast cancer images classification have not been able to achieve high performance compared to radiologists. Here, we propose an improved transfer learning model for ultrasound breast cancer classification using publicly available dataset. We argue that with a proper combination of ImageNet pre-trained model and optimizer, a better performing model for ultrasound breast cancer image classification can be achieved. The proposed model provided a preliminary test accuracy of 99.5%. With more experiments involving various hyperparameters, the model is expected to achieve higher performance when subjected to new instances.

  • PDF

A Study on Image Classification using Deep Learning-Based Transfer Learning (딥 러닝 기반의 전이 학습을 이용한 이미지 분류에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.413-420
    • /
    • 2023
  • For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

The Impact of Nursing Students' Learning Satisfaction on Motivation to Transfer in the Practicum of Psychiatric Nursing Convergence Simulation Using Standardized Patients: Mediating Effect of Self-Efficacy in learning (표준화환자 활용 정신간호학 융합시뮬레이션 실습에 대한 간호학생의 학습만족도가 전이동기에 미치는 영향: 학습자기효능감의 매개효과)

  • Oh, Hyun-Joo;Kim, Mi-Ja;Park, Kyung-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.375-383
    • /
    • 2020
  • The study was to examine the mediating effect of self-efficacy in learning in the relationship between the learning satisfaction and motivation to transfer of nursing students who received the psychiatric nursing convergence simulation practicum using standardized patients. Participants were 144 third grade nursing students. Data were analyzed descriptive statistics, t-test, one-way ANOVA, Pearson's correlation coefficient analysis, and multiple regression following the Baron and Kenny's method and Sobel test for mediation. There were significant correlations between learning satisfaction and self-efficacy in learning(r=.686, p<.001), learning satisfaction and motivation to transfer(r=.633, p<.001) and self-efficacy in learning and motivation to transfer(r=.804, p<.001). Self-efficacy in learning showed partial mediating effects in the relationship between learning satisfaction and motivation to transfer(Z=7.63, p<.001). To increase the motivation to transfer, strategies to enhance the self-efficacy of nursing students are required.

Predicting Brain Tumor Using Transfer Learning

  • Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.73-88
    • /
    • 2023
  • Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.1-11
    • /
    • 2023
  • Breast cancer is the disease that affects women the most worldwide. Due to the development of computer technology, the efficiency of machine learning has increased, and thus plays an important role in cancer detection and diagnosis. Deep learning is a field of machine learning technology based on an artificial neural network, and its performance has been rapidly improved in recent years, and its application range is expanding. In this paper, we propose a DNN-SVM hybrid model that combines the structure of a deep neural network (DNN) based on transfer learning and a support vector machine (SVM) for breast cancer classification. The transfer learning-based proposed model is effective for small training data, has a fast learning speed, and can improve model performance by combining all the advantages of a single model, that is, DNN and SVM. To evaluate the performance of the proposed DNN-SVM Hybrid model, the performance test results with WOBC and WDBC breast cancer data provided by the UCI machine learning repository showed that the proposed model is superior to single models such as logistic regression, DNN, and SVM, and ensemble models such as random forest in various performance measures.

The Effects of Educational Contents and Organizational Characteristics on Learning Transfer and Organizational Effectiveness: Targeting Franchise Companies (교육콘텐츠 특성과 조직 특성이 학습전이 및 조직효과성에 미치는 영향 : 프랜차이즈 기업을 중심으로)

  • Kwon, Min-Hee;Yoo, Yoo-Yeon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.29-38
    • /
    • 2022
  • Because of the need of actual performance of education, this study aims to understand how the factors of educational content and organizational characteristics affect organizational commitment and work performance, which are organizational effects, through learning transfer. As a result, task value, job relevance, and organizational compensation had a significant effect on learning transfer, learning transfer had a significant effect on organizational commitment and work performance, and organizational commitment had a significant effect on work performance. In order to increase the learning transfer of education, when specifying the connection with the actual job and strengthening the compensation system of the members, the learning transfer can be increased and eventually connected to performance. Since limited variables are considered, a more representative sample or professional group should be extracted through future research. In future studies, it will be possible to closely grasp the relationship between learning transfer and organizational effectiveness by setting representative samples and specifying variables.

Recognition and Visualization of Crack on Concrete Wall using Deep Learning and Transfer Learning (딥러닝과 전이학습을 이용한 콘크리트 균열 인식 및 시각화)

  • Lee, Sang-Ik;Yang, Gyeong-Mo;Lee, Jemyung;Lee, Jong-Hyuk;Jeong, Yeong-Joon;Lee, Jun-Gu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.55-65
    • /
    • 2019
  • Although crack on concrete exists from its early formation, crack requires attention as it affects stiffness of structure and can lead demolition of structure as it grows. Detecting cracks on concrete is needed to take action prior to performance degradation of structure, and deep learning can be utilized for it. In this study, transfer learning, one of the deep learning techniques, was used to detect the crack, as the amount of crack's image data was limited. Pre-trained Inception-v3 was applied as a base model for the transfer learning. Web scrapping was utilized to fetch images of concrete wall with or without crack from web. In the recognition of crack, image post-process including changing size or removing color were applied. In the visualization of crack, source images divided into 30px, 50px or 100px size were used as input data, and different numbers of input data per category were applied for each case. With the results of visualized crack image, false positive and false negative errors were examined. Highest accuracy for the recognizing crack was achieved when the source images were adjusted into 224px size under gray-scale. In visualization, the result using 50 data per category under 100px interval size showed the smallest error. With regard to the false positive error, the best result was obtained using 400 data per category, and regarding to the false negative error, the case using 50 data per category showed the best result.

Transfer Learning-based Generated Synthetic Images Identification Model (전이 학습 기반의 생성 이미지 판별 모델 설계)

  • Chaewon Kim;Sungyeon Yoon;Myeongeun Han;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.465-470
    • /
    • 2024
  • The advancement of AI-based image generation technology has resulted in the creation of various images, emphasizing the need for technology capable of accurately discerning them. The amount of generated image data is limited, and to achieve high performance with a limited dataset, this study proposes a model for discriminating generated images using transfer learning. Applying pre-trained models from the ImageNet dataset directly to the CIFAKE input dataset, we reduce training time cost followed by adding three hidden layers and one output layer to fine-tune the model. The modeling results revealed an improvement in the performance of the model when adjusting the final layer. Using transfer learning and then adjusting layers close to the output layer, small image data-related accuracy issues can be reduced and generated images can be classified.