• Title/Summary/Keyword: transfer function-noise model

Search Result 128, Processing Time 0.032 seconds

Active noise control with on-line adaptive algorithm in a duct system (덕트에서 온라인 적응 알고리듬을 이용한 능동소음제어)

  • Kim, Heung-Seob;Hong, Jin-Seok;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1332-1338
    • /
    • 1997
  • In the case of the transfer function for the secondary path is dependent on time, the on-line method which can model it is continuously must be applied to the active noise control technique. And the adaptive random noise technique among the on-line methods is effective in the narrow-band control. In this method, the signal to noise ratio between random noise for modeling and primary noise is low. Therefore, the estimations of transfer function will be prone to inaccuracies and the convergence time will be too long. Such imperfections will have an influence upon the performance of an active noise controller. In this study, t enhance the signal to noise ratio, the on-line method that is combined the conventional adaptive random noise technique and the adaptive line enhancer, is proposed. By using proposed on-line method, a rigorous system identification and control of primary noise have been implemented.

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Structure-borne Noise Analysis of Marine Diesel Engine Considering Receptance of Hull Structure at Mounting Point (선체 마운트 지지점에서의 리셉턴스를 고려한 선박용 디젤 엔진의 고체전달음 해석)

  • Jang, Seong-Gil;Jeong, Weui-Bong;Hong, Chin-Suk;Bae, Soo-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.120-128
    • /
    • 2011
  • This paper presents an efficient method to analyze noise and vibration of marine diesel engines mounted on flexible hull structure. The analysis model should in general include the hull structure, leading to lots of computational efforts. To minimize the computational efforts, in this paper, the transfer synthesis utilizing the receptance at the mounting points is proposed. The procedure is then verified by comparing the results with those from the full model calculation. The effects of flexible hull structure on the acoustic power from engine block are finally investigated. It is found that the effect of the hull is significant when the receptance of hull structure is similar to or greater than that of mount or engine block.

Lateral Dynamics of Multi-span Web System for Roll-to-roll Continuous Process (Roll-to-roll 연속 공정을 위한 Multi-span Web 시스템의 횡방향 운동 해석)

  • Kang, Namcheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1103-1110
    • /
    • 2013
  • Based on the string, Euler beam, and Timoshenko beam theories, the transfer functions of axially translating web system to predict the lateral tracking are introduced in this paper. In addition, total transfer function of a multi-span web handling system is developed by the combination of the transfer functions of each single span. Experiments and computations are carried out and the results obtained for the Timoshenko beam model are compared with those of other models. The comparison indicates that the predictions from the Timoshenko and Euler beam models are quite different from that of the classical string model in both the gain and phase response. The results are expected to help in the development of high fidelity models of web tracking systems within a general computational framework.

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

Multiple Model Adaptive Active Control of Noise in a Duct (덕트 잡음 제거를 위한 다중 모델 적응 능동 소음 제어)

  • 남현도;정종대
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.56-59
    • /
    • 1992
  • Adaptive active attenuation of noise in a duct is considered. A duct is modelled when the acoustic feedback exists. The secondary path transfer function is estimated using multiple model approaches. An IIR structure is assumed for the control filter, and the recursive least mean squares algorithm is used to adjust the filter coefficients.

  • PDF

Measurement of the Modulation Transfer Function of Infrared Imaging System by Modified Slant Edge Method

  • Li, Hang;Yan, Changxiang;Shao, Jianbing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.381-388
    • /
    • 2016
  • The performance of a staring infrared imaging system can be characterized based on estimating the modulation transfer function (MTF). The slant edge method is a widely used MTF estimation method, which can effectively solve the aliasing problem caused by the discrete undersampling of the infrared focal plane array. However, the traditional slant edge method has some limitations such as the low precision of the edge angle extraction and using the approximate function to fit the edge spread function (ESF), which affects the accuracy of the MTF estimation. In this paper, we propose a modified slant edge method, including an edge angle extraction method that can improve the precision of the edge angle extraction and an ESF fitting algorithm which is based on the transfer function model of the imaging system, to enhance the accuracy of the MTF estimation. This modified slant edge method presents higher estimation accuracy and better immunity to noise and edge angle than other traditional methods, which is demonstrated by the simulation and application experiments operated in our study.

Still Image Watermarking in the DCT Domain Using the Human Visual System (DCT 영역에서의 인간의 시각적 특성을 이용한 정지 영상 워터마킹 방법)

  • Kwon O-Hyung;Park Rae-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1214-1221
    • /
    • 2005
  • In this paper, we propose a digital watermarking method for still images, in which the human visual system (HVS) is used in the discrete cosine transform (DCT) domain. The modulation transfer function (MTF) of the HVS model is employed to increase the invisibility of the inserted watermark in images. The proposed watermarking method is shown to be robust to several common image processing techniques, including lowpass filtering and cropping. Also, using the energy relationship of the DCT, we derive the equation that directly computes the watermark weighting factor in the DCT domain for the specified peak signal to noise ratio (PSNR) of the still image and the length of watermark to be inserted. The difference between desired PSNR and PSNR in spatial domain is within 0.07dB for the 7 test images.

TFN model application for hourly flood prediction of small river (소규모 하천의 시간단위 홍수예측을 위한 TFN 모형 적용성 검토)

  • Sung, Ji Youn;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.165-174
    • /
    • 2018
  • The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.