• Title/Summary/Keyword: transdermal

Search Result 317, Processing Time 0.023 seconds

Skin permeability of the biosynthetic galactosylated 2-phenoxyethanol (생합성된 galactosylated 2-phenoxyethanol의 피부 투과도)

  • Su-Hong Kim;Sun-Beom Kwon;Jun-Sub Kim;Gi-Seong Moon;Kyung-hwan Jung;Hyang-Yeol Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • The safety of cosmetic ingredients is considered paramount. In order to enhance safety, a novel preservative, PE-gal, was bio-synthesized by utilizing the Escherichia coli enzyme 𝛽-galactosidase on the conventional preservative 2-phenoxyethanold (PE). The skin absorption of the bio-synthesized product, PE-gal, intended for use in cosmetics, was evaluated for permeability using the Franz Diffusion Cell Assay system, comparing it with the conventinal preservative PE. When using samples of the same mass concentration, the Flux and Kp values of PE increased over time, indicating a gradual increase in permeability. However, PE-gal did not exhibit sufficient permeability to measure. This suggests that the skin permeability of PE is higher than that of the PE-gal saccharide. According to Marzulli et al., when confirming the degree of permeation using Kp values, the permeation rate of PE was measured as "slow" at a concentration of 1mg/mL. Thus, the transdermal permeability of the divedened form of PE-gal was significantly lower compared to PE.

Comparing Molecular Weight Dependent Absorption Rates of Collagen in Oral Mucosal and Epidermis/dermis Tissue Models

  • Ji Yoon Hong;Areum Cha;Gi Jung Kim;Yelim Jang;Jung-Yoon Lee;Emmanouil Apostolidis;Tae Yang Kim;Young-In Kwon
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.4
    • /
    • pp.299-303
    • /
    • 2024
  • Collagen, as an indicator of skin health, has been developed and used for various purposes. The development of an optimized collagen product suitable for use has become an important research field as the consumption of collagen increases. In particular, various efforts are being made to increase its absorption rate. In this study, the transdermal and oral epithelial cell permeabilities of various molecular weight collagen products sold in Korea were compared using a Franz diffusion cell system. The collagen absorption rate of oral mucosal tissue compared to skin epidermis/dermis tissue was significantly higher than that of collagen at M.W. 500 and 1,000 (approximately 10 times and 2 times higher, respectively). Additionally, collagen with a molecular weight of 500 Da increased the absorption rates by 2-3 times compared with products with a molecular weight of 1,000. Collagen with a molecular weight of 500 Da showed the highest Cmax and AUCt values, and all parameters in the oral mucosal cell test group were higher than those in the skin epidermis/dermis cells. Our findings suggest an increased absorption rate through oral mucosal cells rather than skin absorption, confirming that low molecular weight collagen is a major factor increasing the absorption rate.

Physicochemical Characterization of Norbixin Elastic Liposomes and Evaluation of their In Vitro Skin Permeability (노르빅신 탄성 리포좀의 물리화학적 특성 및 시험관 내 피부 투과성 평가)

  • Seo Young Lee;Jiwon Jeong;Cho Hee Oh;Chae Hyun Lee;Jungil Hong;Soo Nam Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.3
    • /
    • pp.213-225
    • /
    • 2024
  • In this study, norbixin loaded elastic liposomes (NELs) containing norbixin were prepared by changing the ratio (0.25 to 1 mg/mL) of sucrose stearate (SS), a surfactant, to evaluate changes in physical properties, skin permeability, light stability, and antioxidant activity. The average diameter of the NELs ranged from 80.6 to 113.8 nm, with zeta potential from 22.2 to 33.9 mV, deformability from 7.3 to 16.1, and loading efficiency from 40.5 to 58.6%. In the 0.05% norbixin-loaded elastic liposome, the highest loading efficiency, zeta potential, and deformability were observed in 1 mg/mL of SS (NEL-5). Under blue LED (10 W/m2), NEL showed higher photostability and antioxidant activity compared to unencapsulated norbixin. Due to its high stability and encapsulation efficiency, NEL-5 formulation was subsequently used for transdermal permeation. Furthermore, the NEL-5 has been shown to retain more in the stratum corneum of the skin than general liposome and 1,3-butylene glycol solution. These results confirm that the use of SS as a surfactant can stabilize the physicochemical properties of NELs and efficiently deliver active ingredients to the stratum corneum.

Anti-allergic activities of Castanea crenata inner shell extracts fermented by Lactobacillus bifermentans (유산균 발효에 의한 율피(Castanea crenata inner shell) 열수추출물의 아토피 피부 질환에 관한 효과 연구)

  • Choi, Mi-Ok;Kim, Bae-Jin;Jo, Seung-Kyeung;Jung, Hee-Kyoung;Lee, Jin-Tae;Kim, Hak-Yoon;Kweon, Dae-Jun
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.583-591
    • /
    • 2013
  • Atopic dermatitis (AD) is a common chronic inflammatory disease associated with a cutaneous hypersensitivity reaction to an allergen. Although the incidence of AD is increasing these days, therapeutics has yet to be developed for its treatment. The aim of this study was conducted in order to compare and investigate the characteristic between the Castanea crenata inner shell extract (CS) and the Castanea crenata inner shell extract fermented by Lactobacillus bifermentans (FCS) for an anti-atopic medication. The total polyphenol and flavonoid contents were similar to CS and FCS. In the DPPH and superoxide anion radical scavenging, the CS and FCS had the potential for antioxidant activities. Both of them did not exhibit cytotoxicity to HS68 cells. The evaluation of the anti-inflammatory activity in Raw264.7 cells demonstrated that the FCS has inhibited the LPS-induced production of nitric oxide as compared to the CS. The anti-atopic dermatitis test was done through the induction of DNCB in AD hairless mice. The FCS has inhibited the development of the atopic dermatitis-like skin lesion by transdermal water loss, melanin and erythema of the skin as compared to the CS. Moreover, the pro-inflammatory cytokine IL-$1{\beta}$ and TNF-${\alpha}$ production in hairless mice were inhibited by the FCS treatment. It indicates that the fermentation of the Castanea crenata inner shell has the potential for the treatment of atopic dermatitis.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

A Study on Formulation Optimization for Improving Skin Absorption of Glabridin-Containing Nanoemulsion Using Response Surface Methodology (반응표면분석법을 활용한 Glabridin 함유 나노에멀젼의 피부흡수 향상을 위한 제형 최적화 연구)

  • Se-Yeon Kim;Won Hyung Kim;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.231-245
    • /
    • 2023
  • In the cosmetics industry, it is important to develop new materials for functional cosmetics such as whitening, wrinkles, anti-oxidation, and anti-aging, as well as technology to increase absorption when applied to the skin. Therefore, in this study, we tried to optimize the nanoemulsion formulation by utilizing response surface methodology (RSM), an experimental design method. A nanoemulsion was prepared by a high-pressure emulsification method using Glabridin as an active ingredient, and finally, the optimized skin absorption rate of the nanoemulsion was evaluated. Nanoemulsions were prepared by varying the surfactant content, cholesterol content, oil content, polyol content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization as RSM factors. Among them, surfactant content, oil content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization, which are factors that have the greatest influence on particle size, were used as independent variables, and particle size and skin absorption rate of nanoemulsion were used as response variables. A total of 29 experiments were conducted at random, including 5 repetitions of the center point, and the particle size and skin absorption of the prepared nanoemulsion were measured. Based on the results, the formulation with the minimum particle size and maximum skin absorption was optimized, and the surfactant content of 5.0 wt%, oil content of 2.0 wt%, high-pressure homogenization pressure of 1,000 bar, and the cycling number of high-pressure homogenization of 4 pass were derived as the optimal conditions. As the physical properties of the nanoemulsion prepared under optimal conditions, the particle size was 111.6 ± 0.2 nm, the PDI was 0.247 ± 0.014, and the zeta potential was -56.7 ± 1.2 mV. The skin absorption rate of the nanoemulsion was compared with emulsion as a control. As a result of the nanoemulsion and general emulsion skin absorption test, the cumulative absorption of the nanoemulsion was 79.53 ± 0.23%, and the cumulative absorption of the emulsion as a control was 66.54 ± 1.45% after 24 h, which was 13% higher than the emulsion.

Preparation of Vitamin E Acetate Nano-emulsion and In Vitro Research Regarding Vitamin E Acetate Transdermal Delivery System which Use Franz Diffusion Cell (Vitamin E Acetate를 함유한 Nano-emulsion 제조와 Franz Diffusion Cell을 이용한 Vitamin E Acetate의 경표피 흡수에 관한 In Vitro 연구)

  • Park, Soo-Nam;Kim, Jai-Hyun;Yang, Hee-Jung;Won, Bo-Ryoung;Ahn, You-Jin;Kang, Myung-Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.91-101
    • /
    • 2009
  • in the cosmetics and medical supply field as a antioxidant material. The stable nano particle emulsion of skin toner type containing VEA was prepared. To evaluate the skin permeation, experiments on VEA permeation to the skin of the ICR outbred albino mice (12 weeks, about 50 g, female) and on differences of solubility as a function of receptor formulations was performed. The analysis of nano-emulsions containing VEA 0.07 % showed that the higher ethanol contents the larger emulsions were formed, while the higher surfactant contents the size became smaller.In this study, vitamin E acetate (VEA, tocopheryl acetate), a lipid-soluble vitamin which is widely used A certain contents of ethanol in receptor phase increased VEA solubility on the nano-emulsion. When the ethanol contents were 10.0 % and 20.0 %, the VEA solubility was higher than 5.0 % and 40.0 %, respectively. The type of surfactant in receptor solution influenced to VEA solubility. The comparison between three kind surfactants whose chemical structures and HLB values are different, showed that solubility of VEA was increased as order of sorbitan sesquioleate (Arlacel 83; HLB 3.7) > POE (10) hydrogenated castor oil (HCO-10; HLB 6.5) > sorbitan monostearate (Arlacel 60; HLB 4.7). VEA solubility was also shown to be different according to the type of antioxidant. In early time, the solubility of the sample including ascorbic acid was similar to those of other samples including other types of antioxidants. However, the solubility of the sample including ascorbic acid was 2 times higher than others after 24 h. Franz diffusion cell experiment using mouse skin was performed with four nano-emulsion samples which have different VEA contents. The emulsion of 10 wt% ethanol was shown to be the most permeable at the amount of 128.8 ${\mu}g/cm^2$. When the result of 10 % ethanol content was compared with initial input of 220.057 ${\mu}g/cm^2$, the permeated amount was 58.53 % and the permeated amount at 10 % ethanol was higher 45.0 % and 15.0 % than the other results which ethanol contents were 1.0 and 20.0 wt%, respectively. Emulsion particle size used 0.5 % surfactant (HCO-60) was 26.0 nm that is one twentieth time smaller than the size of 0.007 % surfactant (HCO-60) at the same ethanol content. Transepidermal permeation of VEA was 54.848 ${\mu}g/cm^2$ which is smaller than that of particlesize 590.7 nm. Skin permeation of nano-emulsion containing VEA and difference of VEA solubility as a function of receptor phase formulation were determined from the results. Using these results, optimal conditions of transepidermal permeation with VEA were considered to be set up.