• Title/Summary/Keyword: transcripts accumulation

Search Result 44, Processing Time 0.023 seconds

Molecular Cloning and Expression of Dihydroflavonol 4-reductase Gene in Tuber Organs of Purple-fleshed Potatoes

  • Kang, Won-Jin;Lee, Yong-Hwa;Kim, Hyun-Soon;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.75-81
    • /
    • 2006
  • A full-length cDNA encoding dihydroflavonol 4-reductase (st-dfr) of potato was isolated by rapid amplification of cDNA ends, and their expression was investigated from purple-fleshed potato (Solanum tuberosum L. cv. Jashim). The st-dfr exists as a member of a small gene family and its transcripts was abundant in the order of tuber flesh, stem, leaf, and root. The expressions of st-dfr gene were light inducible and cultivar dependant. Transgenic potato plants harboring antisense st-dfr (AS-DFR) sequences were analyzed. The accumulation of mRNA was nearly completely inhibited as a result of introducing an AS-DFR gene under the control of the 35S CaMV promoter into the red tuber skin Solanum tuberosum L. cv. Desiree. The anthocyanin content of the tuber peels of the transgenic lines was dramatically decreased by up to 70%. The possible production of flavonols in the peels of AS-DFR transgenic potatoes was discussed.

Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas

  • Kim, Sohee;Kim, Chuna
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.136-145
    • /
    • 2021
  • Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.

Enhanced tolerance through increasing polyamine contents in transgenic tobacco plants with antisense expression of ACC oxidase gene (ACC oxidase 발현 억제 식물체에서 폴리아민 생합성 증가에 의한 스트레스 저항성 증강)

  • Wi, Soo-Jin;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Antisense construct of cDNA for senescencerelated ACC oxidase (CAO) cDNA isolated from carnation flowers were introduced into tobacco by Agrobacteriummediated transformation. The decreasing expression of NtACO and the reduction of ethylene production were observed in these transgenic lines. In contrast, the SAMDC transcripts and spermidine content were increased. The findings that higher content of spermidine in the ethylene suppressed transgenic plants compared with wild-type should be directly resulted in the enhancement of SAMDC activity followed by the increased accumulation of SAMDC transcript. To investigate the pathogenic response in these transgenic plants, wild-type and transgenic plants were inoculated with Phytophthora parasitica pv. nicotianae. Transgenic plants suppressing ethylene production showed the increased resistance against fungal pathogen, comparing with wild-type plant. PR-protein genes expression in CAO-AS-2 and CAOAS-4 were also higher at the normal growth condition and pathogenic response than in wild-type plants. The results of higher spermidine content and SAMDC activity in transgenic plants, CAO-AS-2 and CAO-AS-4, support the possibility that an increase in spermidine content might induce the higher transcripts of PR-protein genes. This results agreed with the phenomena that spermidine promoted the expression of PR1a and a SAMDC inhibitor, MGBG, decreased the expression of PR1a in leaf discs. These results suggest that the resistance against fungal pathogen in transgenic tobacco impaired in ethylene production might be caused by increasing in polyamine, especially spermidine, biosynthesis.

Characterization of Albino Tobaccos (Nicotiana tabacum L.) Derived from Leaf Blade-Segments Cultured in vitro

  • Bae, Chang-Hyu;Tomoko Abe;Lee, Hyo-Yeon;Kim, Dong-Cheol;Min, Kyung-Soo;Park, Kwan-Sam;Tomoki Matsuyama;Takeshi Nakano;Shigeo Yoshida
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 1999
  • The leaf blade-segments of albino tobacco (Nicotiana tabacum L.) were cultured on MS media containing different concentrations of BAP (0, 0.4, 2.2, 4.4, 22.2 ${\mu}{\textrm}{m}$) with or without NAA (0, 0.5, 2.7 ${\mu}{\textrm}{m}$). Multiple shoots were induced on the media containing 0.4 to 2.2 ${\mu}{\textrm}{m}$ BAP. The best condition for multiple shoot induction with root formation was MS media containing 4.4 ${\mu}{\textrm}{m}$ BAP and 0.5 ${\mu}{\textrm}{m}$ NAA. The regenerated albino plants showed a significant reduction in accumulation of chlorophylls and carotenoids. The drastic reduction of the pigments content was associated with the distinct alterations in gene expression in the albino plants. firstly, the expression of plastid genes, such as rbcL, psbA, 165 rDNA and 235 rDNA, was reduced at the level of transcripts in the regenerated albino plants. Secondly, the alteration of structure of the plastid genes was not detected in the albino plants. However, the copy number of the plastid genes whose transcription level was reduced greatly was increased approximately two-fold, although the transcriptions of nuclear gene (255 rDNA) showed the wild-type level.

  • PDF

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Isolation and Characterization of a Gene Encoding Hexokinase from Loquat (Eriobotrya japonica Lindl.)

  • Qin, Qiaoping;Zhang, Lanlan;Xu, Kai;Jiang, Li;Cheng, Longjun;Xu, Chuanmei;Cui, Yongyi
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Hexokinase is the first enzyme in the hexose assimilation pathway; it acts as a sensor for plant sugar responses, and it is also important in determining the fruit sugar levels. The full-length cDNA of a hexokinase gene was isolated from loquat through reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends, which was designated as EjHXK1. EjHXK1 is 1,839 bp long and contains an entire open reading frame encoding 497 amino acids. The predicted protein of EjHXK1 shares 72%-81% similarity with other plant hexokinases. Phylogeny analysis indicated that EjHXK1 is closely related to maize and rice hexokinases. Transient expression of the 35S: EjHXK1-GFP fusion protein was observed on the cell membrane and cytoplasm. Real-time RT-PCR indicated that EjHXK1 is expressed in loquat leaves, stems, flowers, and fruits. EjHXK1 transcripts were higher during early fruit development, but decreases before maturation, which is consistent with hexokinase enzyme activity during fruit development and conducive for hexose accumulation in mature fruits. These results imply that EjHXK1 may play important roles in the regulation of sugar flux during fruit ripening.

Comparison of Trichothecene Biosynthetic Gene Expression between Fusarium graminearum and Fusarium asiaticum

  • Lee, Theresa;Lee, Seung-Ho;Shin, Jean Young;Kim, Hee-Kyoung;Yun, Sung-Hwan;Kim, Hwang-Yong;Lee, Soohyung;Ryu, Jae-Gee
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Nivalenol (NIV) and deoxynivalenol (DON) are predominant Fusarium-producing mycotoxins found in grains, which are mainly produced by Fusarium asiaticum and F. graminearum. NIV is found in most of cereals grown in Korea, but the genetic basis for NIV production by F. asiaticum has not been extensively explored. In this study, 12 genes belonging to the trichothecene biosynthetic gene cluster were compared at the transcriptional level between two NIV-producing F. asiaticum and four DON-producing F. graminearum strains. Chemical analysis revealed that time-course toxin production patterns over 14 days did not differ between NIV and DON strains, excluding F. asiaticum R308, which was a low NIV producer. Both quantitative real-time polymerase chain reaction and Northern analysis revealed that the majority of TRI gene transcripts peaked at day 2 in both NIV and DON producers, which is 2 days earlier than trichothecene accumulation in liquid medium. Comparison of the gene expression profiles identified an NIV-specific pattern in two transcription factor-encoding TRI genes (TRI6 and TRI10) and TRI101, which showed two gene expression peaks during both the early and late incubation periods. In addition, the amount of trichothecenes produced by both DON and NIV producers were correlated with the expression levels of TRI genes, regardless of the trichothecene chemotypes. Therefore, the reduced production of NIV by R308 compared to NIV or DON by the other strains may be attributable to the significantly lower expression levels of the TRI genes, which showed early expression patterns.

Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing (Next generation sequencing 방법을 이용한 적육계 복숭아와 백육계 복숭아의 전사체 분석)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang-Hee;Shin, Il Sheob;Kim, Hyun Ran;Hwang, Hae Seong
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • Differences of gene expression between red flash peach cultivar and white flash peach cultivar were investigated by Nest-generation sequencing (NGS). EST from the red flash peach cultivar and white flash peach cultivar were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, temperature stress, ethylene signal pathway were significantly higher in white flash peach cultivar than in red flash peach cultivar. On the other hand, the up-regulation of proteins involved in anthocyanin and flavonol biosynthesis and protein degradation and sorbitol metabolism were observed in red flash peach cultivar. Chalcone synthase was preferentially expressed in the red flesh peach cultivar, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. Anthocyanin pathway related genes CHS, F3H, DFR, LDOX, UFGT differentially expressed between red flash peach cultivar and white flash peach cultivar. These results suggest that red flash peach cultivar and white flash peach cultivar have different anthocyanin biosynthesis regulatory mechanisms.

Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

  • Cho, Song-Mi;Kang, Beom Ryong;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

Isolation and Characterization of a cDNA Encoding CycD3 Gene from Potato(Solanum tuberosum L.) (감자 (Solanum tuberosum L.) CycD3유전자의 분리 및 특성 분석)

  • Kang, In-Hong;Choi, Seung-Ho;Lee, Hong-Geun;Hwang, Hyun-Sik;Lee, Suk-Chan;Jung, Tae-Young;Lim, Hak-Tae;Bae, Shin-Chul
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2003
  • D-type cyclins are believed to regulate the G1 to S phase transition in response to nutrient and hormonal signals. We investigated the expression characteristics of the key cell-cycle regulators, mitotic and G1 cyclins in potato (Solanum tuberosum L.). We isolated D-type cyclin gene from potato and it was classified as D3 cyclin by sequence similarities and a phylogenetic analysis, and named as StcycD3;1. The accumulation of transcripts was predominantly associated with mitotically active organs, such as stolons, roots, flowers, leaves, and stems. Transcription of StcycD3;1 can be induced by sucrose.