References
- Boddu, J., Cho, S., Kruger, W. M. and Muehlbauer, G. J. 2005. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol. Plant Microbe Interact. 19:407-417.
- Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H. and Desjardins, A. E. 2001. A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet. Biol. 32:121-133. https://doi.org/10.1006/fgbi.2001.1256
- Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics, and biology. The American Phytopathological Society, St. Paul, Minnesota, USA. 260 pp.
- Doohan, F. M., Weston, G., Rezanoor, H. N., Parry, D. W. and Nicholson, P. 1999. Development and use of a reverse transcription- PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. Appl. Environ. Microbiol. 65:3850-3854.
- Dyer, R. B., Plattner, R. D., Kendra, D. F. and Brown, D. W. 2005. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J. Agric. Food Chem. 53:9281-9287. https://doi.org/10.1021/jf051441a
- Eriksen, G. S., Pettersson, H. and Lundh, T. 2004. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem. Toxicol. 42:619-624. https://doi.org/10.1016/j.fct.2003.11.006
- Gale, L. R., Harrision, S. A., Ward, T. J., O'Donnell, K., Milus, E. A., Gale, S. W. and Kistler, H. C. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124-134. https://doi.org/10.1094/PHYTO-03-10-0067
- Gardiner, D. M., Kazan, K. and Manners, J. M. 2009. Mutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 46:604-613. https://doi.org/10.1016/j.fgb.2009.04.004
- Hallen-Adams, H. E., Wenner, N., Kuldau, G. A. and Trail, F. 2011. Deoxynivalenol biosynthesis-related gene expression during wheat kernel colonization by Fusarium graminearum. Phytopathology 101:1091-1096. https://doi.org/10.1094/PHYTO-01-11-0023
- Jiao, F., Kawakami, A. and Nakajima, T. 2008. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol. Lett. 285:212-219. https://doi.org/10.1111/j.1574-6968.2008.01235.x
- Karugia, G. W., Suga, H., Gale, L. R., Nakajima, T., Ueda, A. and Hyakumachi, M. 2009. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J. Gen. Plant Pathol. 75:110-118. https://doi.org/10.1007/s10327-009-0153-5
- Kim, H.-K., Cho, E. J., Lee, S., Lee, Y.-S. and Yun, S.-H. 2012. Functional analyses of individual mating-type transcripts at MAT loci in Fusarium graminearum and Fusarium asiaticum. FEMS Microbiol Lett. 337:89-96. https://doi.org/10.1111/1574-6968.12012
- Kim, J. E., Han, K. H., Jin, J., Kim, H., Kim, J. C., Yun, S.-H. and Lee, Y.-W. 2005. Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl. Environ. Microbiol. 71:1701-1708. https://doi.org/10.1128/AEM.71.4.1701-1708.2005
- Kim, H.-K. and Yun, S.-H. 2011. Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol. J. 27: 301-309. https://doi.org/10.5423/PPJ.2011.27.4.301
- Kimura, M., Tokai, T., O'Donnell, K., Ward, T. J., Fujimura, M., Hamamoto, H., Shibata, T. and Yamaguchi, I. 2003. The trichothecene biosynthesis gene cluster of Fusarium greminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett. 539:105-110. https://doi.org/10.1016/S0014-5793(03)00208-4
- Kimura, M., Tokai, Takahashi-Ando, N., Ohsato, S. and Fujimura, M. 2007. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci. Biotechnol. Biochem. 71:2105-2123. https://doi.org/10.1271/bbb.70183
- Lee, J., Chang, I. Y., Yun, S.-H., Leslie, J. F. and Lee, Y.-W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
- Lee, T., Han, Y.-K., Kim, K.-H., Yun, S.-H. and Lee, Y.-W. 2002. Tri13 and Tri7 determine deoxynivalenol- and nivalenolproducing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 68:2148-2154. https://doi.org/10.1128/AEM.68.5.2148-2154.2002
- Lee, T., Lee, S.-H., Lee, S.-H., Shin, J. Y., Yun, J.-C., Lee, Y.-W. and Ryu, J.-G. 2011. Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J. Food Prot. 74:1169-1174. https://doi.org/10.4315/0362-028X.JFP-10-564
- Lee, T., Oh, D.-W., Kim, H.-S., Lee, J., Kim, Y.-H., Yun, S.-H. and Lee, Y.-W. 2001. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl. Environ. Microbiol. 67:2966-2972. https://doi.org/10.1128/AEM.67.7.2966-2972.2001
- Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing Professional, Ames, Iowa, U.S.A. 388 pp.
- Merhej, J., Boutigny, A. L., Pinson-Gadais, L., Richard-Forget, F. and Barreau, C. 2010. Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit. Contam. 27:710-717. https://doi.org/10.1080/19440040903514531
- Mule, G., Logrieco, A., Stea, G. and Bottalico, A. 1997. Clustering of trichothecene-producing strains determined from 28S ribosomal DNA sequences. Appl. Environ. Microbiol. 63:1843-1846.
- O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910. https://doi.org/10.1073/pnas.130193297
- Pasquali, M., Giraud, F., Brochot, C., Cocco, E., Hoffmann, L. and Bohn, T. 2010. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 137:246-253. https://doi.org/10.1016/j.ijfoodmicro.2009.11.009
- Peplow, A. W., Tag, A. G., Garifullina, G. F. and Beremand, M. N. 2003. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. App. Environ. Microbiol. 69: 2731-2736. https://doi.org/10.1128/AEM.69.5.2731-2736.2003
- Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York.
- Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L. and Kizek, R. 2010. Deoxynivalenol and its toxicity. Interdisciplinary Toxicol. 3:94-99.
- Trail, F. and Common, R. 2000. Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92:130-138. https://doi.org/10.2307/3761457
- Wang, J.-H., Ndoye, M., Zhang, J.-B., Li, H.-P. and Liao, Y.-C. 2011. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins 3:1020-1037. https://doi.org/10.3390/toxins3081020
- Yli-Mattila, T. 2011. Detection of trichothecene-producing Fusarium species in cereals in Northern Europe and Asia. Agron. Res. 9:521-526.
- Zhang, J.-B., Li, H.-P., Dang, F.-J., Qu, B., Xu, Y.-B., Zhao, C.- S. and Liao, Y.-C. 2007. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol. Res. 111:967-975. https://doi.org/10.1016/j.mycres.2007.06.008
Cited by
- trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto vol.9, pp.7, 2017, https://doi.org/10.3390/toxins9070198
- Identification of a 12-Gene Fusaric Acid Biosynthetic Gene Cluster in Fusarium Species Through Comparative and Functional Genomics vol.28, pp.3, 2015, https://doi.org/10.1094/MPMI-09-14-0264-R
- Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology vol.9, pp.2, 2017, https://doi.org/10.3390/toxins9020057
- Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01229
- Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061476
- Changes in Phenylpropanoid and Trichothecene Production by Fusarium culmorum and F. graminearum Sensu Stricto via Exposure to Flavonoids vol.10, pp.3, 2018, https://doi.org/10.3390/toxins10030110