Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2239

Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas  

Kim, Sohee (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Chuna (Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Abstract
Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.
Keywords
aging; cellular senescence; heterogeneity; single-cell RNA sequencing; transcriptomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coppe, J.P., Kauser, K., Campisi, J., and Beausejour, C.M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568-29574.   DOI
2 Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
3 Demaria, M., Ohtani, N., Youssef, S.A., Rodier, F., Toussaint, W., Mitchell, J.R., Laberge, R.M., Vijg, J., Van Steeg, H., Dolle, M.E., et al. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722-733.   DOI
4 De Micheli, A.J., Spector, J.A., Elemento, O., and Cosgrove, B.D. (2020). A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet. Muscle 10, 19.   DOI
5 Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363-9367.   DOI
6 Dorr, J.R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Dabritz, J.H.M., Lisec, J., Lenze, D., Gerhardt, A., Schleicher, K., et al. (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421-425.   DOI
7 Druelle, C., Drullion, C., Desle, J., Martin, N., Saas, L., Cormenier, J., Malaquin, N., Huot, L., Slomianny, C., Bouali, F., et al. (2016). ATF6α regulates morphological changes associated with senescence in human fibroblasts. Oncotarget 7, 67699-67715.   DOI
8 Baar, M.P., Brandt, R.M., Putavet, D.A., Klein, J.D., Derks, K.W., Bourgeois, B.R., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D.A., et al. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147.e16.   DOI
9 Amor, C., Feucht, J., Leibold, J., Ho, Y.J., Zhu, C., Alonso-Curbelo, D., Mansilla-Soto, J., Boyer, J.A., Li, X., Giavridis, T., et al. (2020). Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127-132.   DOI
10 Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F. (2017). Aging as an epigenetic phenomenon. Curr. Genomics 18, 385-407.
11 Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., et al. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599.   DOI
12 Benassi, M.S., Molendini, L., Gamberi, G., Ragazzini, P., Sollazzo, M.R., Merli, M., Asp, J., Magagnoli, G., Balladelli, A., Bertoni, F., et al. (1999). Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int. J. Cancer 84, 489-493.
13 Biran, A., Zada, L., Abou Karam, P., Vadai, E., Roitman, L., Ovadya, Y., Porat, Z., and Krizhanovsky, V. (2017). Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661-671.   DOI
14 Almanzar, N., Antony, J., Baghel, A.S., Bakerman, I., Bansal, I., Barres, B.A., Beachy, P.A., Berdnik, D., Bilen, B., Brownfield, D., et al. (2020). A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590-595.   DOI
15 Borodkina, A., Deryabin, P., Giukova, A.A., and Nikolsky, N. (2018). "Social Life" of senescent cells: what is SASP and why study it? Acta Naturae 10, 4-14.   DOI
16 Burd, C.E., Sorrentino, J.A., Clark, K.S., Darr, D.B., Krishnamurthy, J., Deal, A.M., Bardeesy, N., Castrillon, D.H., Beach, D.H., and Sharpless, N.E. (2013). Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340-351.   DOI
17 Campisi, J. (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27-S31.   DOI
18 Casella, G., Munk, R., Kim, K.M., Piao, Y., De, S., Abdelmohsen, K., and Gorospe, M. (2019). Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294-7305.   DOI
19 Acosta, J.C., O'Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006-1018.   DOI
20 Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551.   DOI
21 Kimmel, J.C., Penland, L., Rubinstein, N.D., Hendrickson, D.G., Kelley, D.R., and Rosenthal, A.Z. (2019). Murine single-cell RNA-seq reveals cell-identity-and tissue-specific trajectories of aging. Genome Res. 29, 2088-2103.   DOI
22 Lafzi, A., Moutinho, C., Picelli, S., and Heyn, H. (2018). Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 13, 2742-2757.   DOI
23 Krishnamurthy, J., Torrice, C., Ramsey, M.R., Kovalev, G.I., Al-Regaiey, K., Su, L., and Sharpless, N.E. (2004). Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299-1307.   DOI
24 Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S.W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657-667.   DOI
25 Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y., and Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U. S. A. 98, 12072-12077.   DOI
26 Liu, Z., Wild, C., Ding, Y., Ye, N., Chen, H., Wold, E.A., and Zhou, J. (2016). BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov. Today 21, 989-996.   DOI
27 Lozano-Torres, B., Estepa-Fernandez, A., Rovira, M., Orzaez, M., Serrano, M., Martinez-Manez, R., and Sancenon, F. (2019). The chemistry of senescence. Nat. Rev. Chem. 3, 426-441.   DOI
28 Marthandan, S., Priebe, S., Hemmerich, P., Klement, K., and Diekmann, S. (2014). Long-term quiescent fibroblast cells transit into senescence. PLoS One 9, e115597.   DOI
29 Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M., Fernandez-Marcos, P.J., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016). Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445.   DOI
30 Munoz-Espin, D. and Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496.   DOI
31 Palmer, A.K. and Kirkland, J.L. (2016). Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp. Gerontol. 86, 97-105.   DOI
32 Nathan, C. and Ding, A. (2010). Nonresolving inflammation. Cell 140, 871-882.   DOI
33 Paez-Ribes, M., Gonzalez-Gualda, E., Doherty, G.J., and Munoz-Espin, D. (2019). Targeting senescent cells in translational medicine. EMBO Mol. Med. 11, e10234.
34 Pajvani, U.B., Trujillo, M.E., Combs, T.P., Iyengar, P., Jelicks, L., Roth, K.A., Kitsis, R.N., and Scherer, P.E. (2005). Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat. Med. 11, 797-803.   DOI
35 Perez-Mancera, P.A., Young, A.R., and Narita, M. (2014). Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547-558.   DOI
36 Ray, D. and Yung, R. (2018). Immune senescence, epigenetics and autoimmunity. Clin. Immunol. 196, 59-63.   DOI
37 Ressler, S., Bartkova, J., Niederegger, H., Bartek, J., Scharffetter-Kochanek, K., Jansen-Durr, P., and Wlaschek, M. (2006). p16INK4a is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379-389.   DOI
38 Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S., Fernandez, R., Akbarpour, M., Chen, C.I., Ren, Z., et al. (2019). Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517-1536.   DOI
39 Roy, A.L., Sierra, F., Howcroft, K., Singer, D.S., Sharpless, N., Hodes, R.J., Wilder, E.L., and Anderson, J.M. (2020). A blueprint for characterizing senescence. Cell 183, 1143-1146.   DOI
40 Schaum, N., Lehallier, B., Hahn, O., Palovics, R., Hosseinzadeh, S., Lee, S.E., Sit, R., Lee, D.P., Losada, P.M., and Zardeneta, M.E. (2020). Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602.   DOI
41 Serrano, M., Hannon, G.J., and Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704-707.   DOI
42 Sharpless, N.E. and Sherr, C.J. (2015). Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397-408.   DOI
43 Smogorzewska, A. and de Lange, T. (2002). Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338-4348.   DOI
44 Soares, J.P., Cortinhas, A., Bento, T., Leitao, J.C., Collins, A.R., Gaivao, I., and Mota, M.P. (2014). Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY) 6, 432-439.   DOI
45 Yi, W., Lu, Y., Zhong, S., Zhang, M., Sun, L., Dong, H., Wang, M., Wei, M., Xie, H., Qu, H., et al. (2020). A single-cell transcriptome atlas of the aging human and macaque retina. Natl. Sci. Rev. 2020 Aug 25 [Epub]. https://doi.org/10.1101/2020.07.17.207977   DOI
46 Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J., et al. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130.   DOI
47 Wiley, C.D., Liu, S., Limbad, C., Zawadzka, A.M., Beck, J., Demaria, M., Artwood, R., Alimirah, F., Lopez-Dominguez, J.A., Kuehnemann, C., et al. (2019). SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 28, 3329-3337.e5.   DOI
48 Xu, M., Palmer, A.K., Ding, H., Weivoda, M.M., Pirtskhalava, T., White, T.A., Sepe, A., Johnson, K.O., Stout, M.B., Giorgadze, N., et al. (2015). Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997.   DOI
49 Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., and Lowe, S.W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656-660.   DOI
50 Yang, N.C. and Hu, M.L. (2005). The limitations and validities of senescence associated-β-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp. Gerontol. 40, 813-819.   DOI
51 Zhang, R., Chen, H.Z., and Liu, D.P. (2015). The four layers of aging. Cell Syst. 1, 180-186.   DOI
52 Zheng, Y., Liu, X., Le, W., Xie, L., Li, H., Wen, W., Wang, S., Ma, S., Huang, Z., Ye, J., et al. (2020). A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11, 740-770.   DOI
53 Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S., and Peters, G. (1996). Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859-867.   DOI
54 Zhou, Q., Wan, Q., Jiang, Y., Liu, J., Qiang, L., and Sun, L. (2020). A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 31, 107694.   DOI
55 Zhu, Y., Armstrong, J.L., Tchkonia, T., and Kirkland, J.L. (2014). Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 17, 324-328.   DOI
56 Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H.M., Ling, Y.Y., Stout, M.B., Pirtskhalava, T., Giorgadze, N., Johnson, K.O., Giles, C.B., et al. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428-435.   DOI
57 Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., Ikeno, Y., Hubbard, G.B., Lenburg, M., et al. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658.   DOI
58 Zou, Z., Long, X., Zhao, Q., Zheng, Y., Song, M., Ma, S., Jing, Y., Wang, S., He, Y., Esteban, C.R., et al. (2021). A single-cell transcriptomic atlas of human skin aging. Dev. Cell 56, 383-397.e8.   DOI
59 Hall, B.M., Balan, V., Gleiberman, A.S., Strom, E., Krasnov, P., Virtuoso, L.P., Rydkina, E., Vujcic, S., Balan, K., Gitlin, I.I., et al. (2017). p16 (Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY) 9, 1867-1884.   DOI
60 Hammond, T.R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A.J., Gergits, F., Segel, M., Nemesh, J., et al. (2019). Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253-271. e6.   DOI
61 Hernandez-Segura, A., de Jong, T.V., Melov, S., Guryev, V., Campisi, J., and Demaria, M. (2017). Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652-2660.e4.   DOI
62 Idda, M.L., McClusky, W.G., Lodde, V., Munk, R., Abdelmohsen, K., Rossi, M., and Gorospe, M. (2020). Survey of senescent cell markers with age in human tissues. Aging (Albany NY) 12, 4052-4066.   DOI
63 Jeyapalan, J.C., Ferreira, M., Sedivy, J.M., and Herbig, U. (2007). Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36-44.   DOI
64 Chiche, A., Le Roux, I., von Joest, M., Sakai, H., Aguin, S.B., Cazin, C., Salam, R., Fiette, L., Alegria, O., Flamant, P., et al. (2017). Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20, 407-414.e4.   DOI
65 Catz, S.D. and Johnson, J.L. (2001). Transcriptional regulation of bcl-2 by nuclear factor κB and its significance in prostate cancer. Oncogene 20, 7342-7351.   DOI
66 Enge, M., Arda, H.E., Mignardi, M., Beausang, J., Bottino, R., Kim, S.K., and Quake, S.R. (2017). Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321-330.e14.   DOI
67 Gabellini, C., Castellini, L., Trisciuoglio, D., Kracht, M., Zupi, G., and Del Bufalo, D. (2008). Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma. J. Neurochem. 107, 871-882.   DOI
68 Chen, X., Xu, H., Hou, J., Wang, H., Zheng, Y., Li, H., Cai, H., Han, X., and Dai, J. (2020). Epithelial cell senescence induces pulmonary fibrosis through Nanog-mediated fibroblast activation. Aging (Albany NY) 12, 242.   DOI
69 Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730.   DOI
70 Childs, B.G., Baker, D.J., Kirkland, J.L., Campisi, J., and Van Deursen, J.M. (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139-1153.   DOI
71 Childs, B.G., Baker, D.J., Wijshake, T., Conover, C.A., Campisi, J., and Van Deursen, J.M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472-477.   DOI