• Title/Summary/Keyword: transcriptional activator

Search Result 139, Processing Time 0.018 seconds

Interaction of promyelocytic leukemia/p53 affects signal transducer and activator of transcription-3 activity in response to oncostatin M

  • Lim, Jiwoo;Choi, Ji Ha;Park, Eun-Mi;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.203-212
    • /
    • 2020
  • Promyelocytic leukemia (PML) gene, through alternative splicing of its C-terminal region, generates several PML isoforms that interact with specific partners and perform distinct functions. The PML protein is a tumor suppressor that plays an important role by interacting with various proteins. Herein, we investigated the effect of the PML isoforms on oncostatin M (OSM)-induced signal transducer and activator of transcription-3 (STAT-3) transcriptional activity. PML influenced OSM-induced STAT-3 activity in a cell type-specific manner, which was dependent on the p53 status of the cells but regardless of PML isoform. Interestingly, overexpression of PML exerted opposite effects on OSM-induced STAT-3 activity in p53 wild-type and mutant cells. Specifically, overexpression of PML in the cell lines bearing wild-type p53 (NIH3T3 and U87-MG cells) decreased OSM-induced STAT-3 transcriptional activity, whereas overexpression of PML increased OSM-induced STAT-3 transcriptional activity in mutant p53-bearing cell lines (HEK293T and U251-MG cells). When wild-type p53 cells were co-transfected with PML-IV and R273H-p53 mutant, OSM-mediated STAT-3 transcriptional activity was significantly enhanced, compared to that of cells which were transfected with PML-IV alone; however, when cells bearing mutant p53 were co-transfected with PML-IV and wild-type p53, OSM-induced STAT-3 transcriptional activity was significantly decreased, compared to that of transfected cells with PML-IV alone. In conclusion, PML acts together with wild-type or mutant p53 and influences OSM-mediated STAT-3 activity in a negative or positive manner, resulting in the aberrant activation of STAT-3 in cancer cells bearing mutant p53 probably might occur through the interaction of mutant p53 with PML.

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Improvement of the Biosensor for Detection of Endocrine Disruptors by Combination of Human Estrogen Receptorα and Co-Activator (Human Estrogen Receptor α와 Co-activator로 구성된 바이오센서를 이용한 내분비계장애물질의 검출)

  • Lee, Haeng-Seog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.893-904
    • /
    • 2006
  • To improve sensitivity of biosensor as yeast two-hybrid detection system for estrogenic activity of suspected chemicals, we tested effects of several combinations of the bait and fish components in the two-hybrid system on Saccharomyces cerevisiae inducted a chromosome-integrated lacZ reporter gene that was under the control of CYC1 promoter and the upstream Gal4p-binding element $UAS_{GAL}$. The bait components that were fused with the Gal4p DNA binding domain are full-length human estrogen receptor ${\alpha}$ and its ligand-binding domain. The fish components that were fused with the Gal4p transcriptional activation domain were nuclear receptor-binding domains of co-activators SRC1 and TIF2. We found that the combination of the full-length human estrogen receptor ${\alpha}$ with the nuclear receptor-binding domain of co-activator SRC1 was most effective for the estrogen-dependent induction of reporter activity among the two-hybrid systems so far reported. The relative strength of transcriptional activation by representative natural and xenobiotic chemicals was well correlated with their estrogenic potency that had been reported with other assay systems.

KBTBD7, a novel human BTB-kelch protein, activates transcriptional activities of SRE and AP-1

  • Hu, Junjian;Yuan, Wuzhou;Tang, Ming;Wang, Yuequn;Fan, Xiongwei;Mo, Xiaoyang;Li, Yongqing;Ying, Zaochu;Wan, Yongqi;Ocorr, Karen;Bodmer, Rolf;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • In this study, a novel member of BTB-kelch proteins, named KBTBD7, was cloned from a human embryonic heart cDNA library. The cDNA of KBTBD7 is 3,008 bp long and encodes a protein product of 684 amino acids (77.2 kD). This protein is highly conserved in evolution across different species. Western blot analysis indicates that a 77 kD protein specific for KBTBD7 is wildly expressed in all embryonic tissues examined. In COS-7 cells, KBTBD7 proteins are localized to the cytoplasm. KBTBD7 is a transcription activator when fused to GAL4 DNA-binding domain. Deletion analysis indicates that the BTB domain and kelch repeat motif are main regions for transcriptional activation. Overexpression of KBTBD7 in MCF-7 cells activates the transcriptional activities of activator protein-1 (AP-1) and serum response element (SRE), which can be relieved by siRNA. These results suggest that KBTBD7 proteins may act as a new transcriptional activator in mitogen-activated protein kinase (MAPK) signaling.

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research

  • Kim, Moon-Soo;Kini, Anu Ganesh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.533-541
    • /
    • 2017
  • Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

The Potato Transcriptional Co-activator StMBF1 Is Up-regulated in Response to Oxidative Stress and Interacts with the TATA-box Binding Protein

  • Arce, Debora Pamela;Tonon, Claudia;Zanetti, Maria Eugenia;Godoy, Andrea Veronica;Hirose, Susumu;Casalongue, Claudia Anahi
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.355-360
    • /
    • 2006
  • To gain a better understanding on the function of the potato Solanum tuberosum Multiprotein Bridging Factor 1 protein (StMBF1) its interaction with the TATA box binding protein (TBP) was demonstrated. In addition we reported that StMBF1 rescues the yeast mbf1 mutant phenotype, indicating its role as a plant co-activator. These data reinforce the hypothesis that MBF1 function is also conserved among non closely related plant species. In addition, measurement of StMBF1 protein level by Western blot using anti-StMBF1 antibodies indicated that the protein level increased upon $H_2O_2$ and heat shock treatments. However, the potato $\beta$-1,3-glucanase protein level was not changed under the same experimental conditions. These data indicate that StMBF1 participates in the cell stress response against oxidative stress allowing us to suggest that MBF1 genes from different plant groups may share similar functions.

Subcloning and DNA Sequencing of the Phenol Regulatory Genes in Ralstonia eutropha JMP134 (Ralstonia eutropha JMP134에서 페놀분해에 관여하는 조절유전자의 Subcloning 및 염기서열 분석)

  • ;Subramanian Chitra
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • In this study, chromosomal DNA fragment related to the regulation of phenol metabolism in Ralstonia eutropha JMP 134 was cloned and sequenced. The result has shown that two open reading frames (ORF1 and ORF2) exist on this regulatory region. ORF1, which initiates from 454 bp downstream of the stop codon of the phenol hydroxylase genes, was found to be composed of 501 amino acids. ORF2, whose start codon is overlapped with the stop codon of ORFl, was found to contain 232 amino acids. The comparison of amino acid sequences with other proteins has revealed that ORF1 belongs to the family of NtrC transcriptional activator, whereas ORF2 shares high homology with the family of GntR protein, which is known to be a negative regulator. ORF1 and ORF2 were designated as a putative positive regulator, phlR2 and a negative regulator phlA, respectively. Possible regulatory mechanisms of phenol metabolism in this strain was discussed.

Cloning and Characterization of the Paraquat Resistance-Related Genes from Ochrobactrum anthropi JW-2 (Ochrobactrum anthropi JW-2 유래의 Paraquat 내성유전자 PqrA의 주변 유전자군 분석)

  • Bae Eun-Kyung;Lee Hyo-Shin;Won Sung-Hye;Lee Byung-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • A 4,971 bp chromosomal DNA fragment containing the pqrA, paraquat resistance gene, was cloned from Ochrobactrum anthropi JW-2, and the complete nucleotide sequence was determined. Nucleotide and deduced amino acid sequences of the fragment revealed the presence of 4 complete ORFs (orf2, pqrA, orf3, orf4) and two incomplete ORFs(orf1, orf5). Orf1, pqrA, orf4 and orf5 exists at the direct strand but orf2 and orf3 exists at the reverse complementary strand. Orf1 which of incomplete sequences without start codon shares homology with ATP binding region of the response regulator receiver. Orf2 shares high homology with members of the tetR family of transcriptional repressor which have a helix-turn-helix (H-T-H) motif. Therefore, the orf2 is predicted as a transcriptional repressor of pqrA and is designated as pqrR2. Orf3 shares high homology with the members of the lysR family acting as a transcriptional activator which have both of a H-T-H motif at the N-terminal region and substrate binding domain at the C-terminal region. Therefore, the orf3 is predicted as a transcriptional activator of pqrA and is designated as pqrR1. Orf4 shows homology with the periplasmic substrate-binding protein of amino acid ABC transporter. Orf5 which of incomplete sequences without stop codon revealed the homology with the permeases protein of amino acid ABC transporter.