• Title/Summary/Keyword: transcription factor profiling

Search Result 30, Processing Time 0.037 seconds

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

Down-Regulation of Sox11 Is Required for Efficient Osteogenic Differentiation of Adipose-Derived Stem Cells

  • Choi, Mi Kyung;Seong, Ikjoo;Kang, Seon Ah;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.337-344
    • /
    • 2014
  • Adipose-derived stem cells represent a type of mesenchymal stem cells with the attendant capacity to self-renew and differentiate into multiple cell lineages. We have performed a microarray-based gene expression profiling of osteogenic differentiation and found that the transcription factor Sox11 is down-regulated during the process. Functional assays demonstrate that down-regulation of Sox11 is required for an efficient differentiation. Furthermore, results from forced expression of constitutively-active and dominant-negative derivatives of Sox11 indicate that Sox11 functions as a transcriptional activator in inhibiting osteogenesis. Sox11 thus represents a novel regulator of osteogenesis whose expression and activity can be potentially manipulated for controlled differentiation.

Overexpression of OsNAC17 enhances drought tolerance in rice

  • Kim, Tae Hwan;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.168-168
    • /
    • 2017
  • Drought conditions during cultivation reduce agricultural production yield less than a theoretical maximum yield under normal condition. Plant specific NAC transcription factors in rice are known to play an essential roles in stress resistance transcriptional regulation. In this study, we report the rice (Oryza sativa L japonica) NAM, AFTF and CUC transcription factor OsNAC17, which is predominantly induced by abiotic stress in leaf, was contribute to the drought tolerance mediated reactive oxygen species (ROS) in transgenic rice plants. Constitutive (PGD1) promoter was introduced to overexpress OsNAC17 and produced the transgenic PDG1:OsNAC17. Overexpression of OsNAC17 throughout the whole plant improved drought resistance phenotype at the vegetative stage. Morphological characteristics such as grain yield, grain filling rate, and total grain weight improved by 22~64% over wild type plants under drought conditions during the reproductive stage. The improved drought tolerance in transgenic rice was involved in reducing stomatal density up to 15% than in wild type plants and in increasing reactive oxygen species-scavenging enzyme. DEG profiling experiment identified 119 up-regulated genes by more than twofold (P<0.01). These genes included UDP-glycosyltransferase family protein, similar to 2-alkenal reductase (NADPH-dependent oxireductase), similar to retinol dehydrogenase 12, Lipoxygenase, and NB-ARC domain containing protein related in cell death. Furthermore, OsNAC17 was act as a transcriptional activator, which has an activation domain in C-terminal region. These result demonstrate that the overexpression of OsNAC17 improve drought tolerance by regulating ROS scavenging enzymes and by reducing stomatal density

  • PDF

Expressional Profiling of Molecules Associated with Epigenetic Methylation-Related Fertility in the Rat Testis during Postnatal Period

  • Seo, Hee-Jung;Lee, Seong-Kyu;Baik, Haing-Woon;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2012
  • The male reproduction is precisely controlled by a number of intrinsic and extrinsic factors. These factors usually involve in expressional regulation of various molecules influencing on sperm production in the testis. A number of ways are employed to control the transcription of specific genes, including epigenetic modifications of DNA and histone molecules. DNA methylation of CpG dinucleotides is a commonly used regulatory mechanism for testicular genes associated with the fertility. Previous studies have demonstrated the infertility induced by improper DNA methylation of these genes. In the present research, we attempted to determine transcriptional expression of some of these genes in the rat testis at different postnatal ages using real-time PCR analysis. These genes include neurotrophin 3 (Ntf3), insulin-like growth factor II (Igf2), JmjC-domain-containing histone demethylase 2A 1 (Jhm2da), paired box 8 transcription factor (Pax8), small nuclear ribonucleoprotein polypeptide N (Snrpn), and 5,10-methylenetetrahydrofolate reductase (Mthfr). The expression levels of Ntf3, Igf2, and Snrpn genes were the highest at the neonatal age, followed by transient decreases at the prepubertal age. Expression of Jhm2da and Mthfr genes were continuously increased from the neonate to 1 year of age. The levels of Pax8 mRNA at the early ages were higher than those at the later ages of postnatal development. These findings suggest that expression of some fertility-associated testicular genes in the rat during postnatal period could be differentially regulated by the control of the degree of DNA methylation.

Genome-wide Expression Profiling of Piperine and Piper nigrum Linne (호초(胡椒)와 Piperine에 의한 총체적 유전자 발현 비교)

  • Jo, Eun-Young;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.831-836
    • /
    • 2010
  • In addition to spice, black pepper (Piper nigrum Linne : PnL) has been used as herbal medicine because of its function in anti-oxidation, anti-inflammation, and anti-carcinogenesis. Recently, it has been reported that piperine, a component of PnL, inhibits adipocyte differentiation by repressing various adipogenic gene expressions. In this study, we determined whether piperine is a major constituent of PnL that confers the anti-adipogenic activity at whole genome level. Differentiation of 3T3-L1 pre-adipocytes was induced in presence of PnL extract or piperine. To compare genes that are regulated by PnL extract or piperine, we performed expression profiling using microarrays (Agilent Mouse 44k 4plex). RNA samples were labeled with Cy3 and Cy5, respectively. Labeled samples were hybridized to the microarrays. Results were filtered and cut off set p<0.05. Genes exhibiting significant differences in expression level were classified into Gene Ontology (GO)-based functional categories (http://www.geneontology.org) and KEGG (http://www.genome.jp/kegg/). Extract of PnL and its component piperine reduced lipid accumulation in 3T3-L1 cells during adipogenesis. Such anti-adipogenic activity appears to result from down-regulation of transcription factor genes involved in adipogenesis, and other genes involved in fatty acid synthesis, transport, triglyceride synthesis, and carbohydrate metabolism. These genome-wide studies lead to conclude that piperine, as a critical component of PnL, plays common role with PnL in anti-adipogenesis.

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

Expression profiling of cultured podocytes exposed to nephrotic plasma reveals intrinsic molecular signatures of nephrotic syndrome

  • Panigrahi, Stuti;Pardeshi, Varsha Chhotusing;Chandrasekaran, Karthikeyan;Neelakandan, Karthik;PS, Hari;Vasudevan, Anil
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.7
    • /
    • pp.355-363
    • /
    • 2021
  • Background: Nephrotic syndrome (NS) is a common renal disorder in children attributed to podocyte injury. However, children with the same diagnosis have markedly variable treatment responses, clinical courses, and outcomes, suggesting molecular heterogeneity. Purpose: This study aimed to explore the molecular responses of podocytes to nephrotic plasma to identify specific genes and signaling pathways differentiating various clinical NS groups as well as biological processes that drive injury in normal podocytes. Methods: Transcriptome profiles from immortalized human podocyte cell line exposed to the plasma of 8 subjects (steroid-sensitive nephrotic syndrome [SSNS], n=4; steroid-resistant nephrotic syndrome [SRNS], n=2; and healthy adult individuals [control], n=2) were generated using microarray analysis. Results: Unsupervised hierarchical clustering of global gene expression data was broadly correlated with the clinical classification of NS. Differential gene expression (DGE) analysis of diseased groups (SSNS or SRNS) versus healthy controls identified 105 genes (58 up-regulated, 47 down-regulated) in SSNS and 139 genes (78 up-regulated, 61 down-regulated) in SRNS with 55 common to SSNS and SRNS, while the rest were unique (50 in SSNS, 84 genes in SRNS). Pathway analysis of the significant (P≤0.05, -1≤ log2 FC ≥1) differentially expressed genes identified the transforming growth factor-β and Janus kinase-signal transducer and activator of transcription pathways to be involved in both SSNS and SRNS. DGE analysis of SSNS versus SRNS identified 2,350 genes with values of P≤0.05, and a heatmap of corresponding expression values of these genes in each subject showed clear differences in SSNS and SRNS. Conclusion: Our study observations indicate that, although podocyte injury follows similar pathways in different clinical subgroups, the pathways are modulated differently as evidenced by the heatmap. Such transcriptome profiling with a larger cohort can stratify patients into intrinsic subtypes and provide insight into the molecular mechanisms of podocyte injury.

Differences in liver microRNA profiling in pigs with low and high feed efficiency

  • Miao, Yuanxin;Fu, Chuanke;Liao, Mingxing;Fang, Fang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.312-329
    • /
    • 2022
  • Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

Transcriptome Analysis in Brassica rapa under the Abiotic Stresses Using Brassica 24K Oligo Microarray

  • Lee, Sang-Choon;Lim, Myung-Ho;Kim, Jin A;Lee, Soo-In;Kim, Jung Sun;Jin, Mina;Kwon, Soo-Jin;Mun, Jeong-Hwan;Kim, Yeon-Ki;Kim, Hyun Uk;Hur, Yoonkang;Park, Beom-Seok
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.595-605
    • /
    • 2008
  • Genome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold ($4^{\circ}C$), salt (250 mM NaCl), and drought (air-dry) treated B. rapa plants. Among the B. rapa unigenes represented on the microarray, 417 (1.7%), 202 (0.8%), and 738 (3.1%) were identified as responsive genes that were differently expressed 5-fold or more at least once during a 48-h treatment with cold, salt, and drought, respectively. These results were confirmed by RT-PCR analysis. In the abiotic stress responsive genes identified, we found 56 transcription factor genes and 60 commonly responsive genes. It suggests that various transcriptional regulatory mechanisms and common signaling pathway are working together under the abiotic stresses in B. rapa. In conclusion, our new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.