Browse > Article

Transcriptome Analysis in Brassica rapa under the Abiotic Stresses Using Brassica 24K Oligo Microarray  

Lee, Sang-Choon (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Lim, Myung-Ho (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Kim, Jin A (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Lee, Soo-In (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Kim, Jung Sun (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Jin, Mina (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Kwon, Soo-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Mun, Jeong-Hwan (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Kim, Yeon-Ki (GreenGene Biotech Inc. Genomics and Genetics Institute)
Kim, Hyun Uk (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Hur, Yoonkang (Plant Genome Research Institute, Chungnam National University)
Park, Beom-Seok (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
Abstract
Genome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold ($4^{\circ}C$), salt (250 mM NaCl), and drought (air-dry) treated B. rapa plants. Among the B. rapa unigenes represented on the microarray, 417 (1.7%), 202 (0.8%), and 738 (3.1%) were identified as responsive genes that were differently expressed 5-fold or more at least once during a 48-h treatment with cold, salt, and drought, respectively. These results were confirmed by RT-PCR analysis. In the abiotic stress responsive genes identified, we found 56 transcription factor genes and 60 commonly responsive genes. It suggests that various transcriptional regulatory mechanisms and common signaling pathway are working together under the abiotic stresses in B. rapa. In conclusion, our new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.
Keywords
abiotic stress; Brassica rapa; microarray; transcriptome;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Breton, G., Danyluk, J., Charron, J.B., and Sarhan, F. (2003). Expression profiling and bioinformatic analyses of a novel stressregulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol. 132,64-74   DOI   ScienceOn
2 Fahey, J.W., and Talalay, P. (1995). The role of crucifers in cancer chemoprotection. In Phytochemicals and Health, D.L. Gustin and H.E. Flores, eds. (Rockville, USA: American Society of Plant Physiologists), pp. 87-93
3 Francois, L.E. (1994). Growth, seed yield and oil content of canola grown under saline conditions. Argon. J. 86, 233-237
4 Gomez-Campo, C., and Prakash, S. (1999). Origin and domestication. In Biology of Brassica Coenospecies, C. Gomez-Campo, ed. (Amsterdam: Elsevier), pp. 33-58
5 Heintzen, C., Melzer, S., Fischer, R., Kappeler, S., Apel, K., and Staiger, D. (1994). A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. PlantJ. 5,799-813   DOI   ScienceOn
6 Irizarry, RA, Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., and Speed, 1.P. (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15   DOI   ScienceOn
7 Kimura, M., Yamamoto, Y.Y., Seki, M., Sakurai, T., Sato, M., Abe, T., Yoshida, S., Manabe, K., Shinozaki, K., and Matsui, M. (2003). Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem. Photobiol. 77, 226-233   DOI   ScienceOn
8 Lee, S., and Yun, S.C. (2006). The ozone stress transcriptome of pepper (Capsicum annuum L.). Mol. Cells 21,197-205
9 Li, F., Wu, X., Tsang, E., and Cutler, AJ. (2005). Transcriptional profiling of imbibed Brassica napus seed. Genomics 86, 718-730   DOI   ScienceOn
10 Morinaga, T. (1933). Interspecific hybridisation in Brassica: 5. The cytology of F1 hybrid of B. carinata and B. a/bog/abra. Jpn. J. Bot. 6, 467-475
11 O'Neill, C.M., and Bancroft, I. (2000). Comparative physical mapping of segments of the genome of Brassica o/eracea var. a/bog/abra that are homeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233-243   DOI   ScienceOn
12 Rana, D., van den Boogaart, 1., O'Neill, C.M., Hynes, L., Bent, E., Macpherson, L., Park, J.Y., Lim, Y.P., and Bancroft, I. (2004). Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40,725-733   DOI   ScienceOn
13 RDA (Rural Development Administration) (2007). Culture plan of principal horticultural crops (Suwon, South Korea: RDA)
14 Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A, Nakajima, M., Enju, A, Sakurai, 1., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31,279-292   DOI   ScienceOn
15 U, N. (1935). Genomic analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389-452
16 Talarns, V., Oztuk, N.Z., Bohnert, H.J., and Tuberosa, R. (2006). Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J. Exp. Bot. 58,229-240   DOI   ScienceOn
17 Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. BioI. 50, 571-599   DOI
18 Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16,2481-2498   DOI   ScienceOn
19 Workman, C., Jensen, L.J., Jarmer, H., Berka, R., Gautier, L., Nielser, H.B., Saxild, H.H., Nielsen, C., Brunak, S., and Knudsen, S. (2002). A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome BioI. 3, research0048.1-0048.16
20 Yang, T.J., Kim, J.S., Kwon, S.J., Lim, K.B., Choi, B.S., Kim, JA, Jin, M., Park, J.Y., Lim, M.H., Kim, H.I., et al. (2006). Sequencelevel analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339-1347   DOI   ScienceOn
21 Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, RA, Hasegawa, P.M., and Pardo, J.M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/W anti porters in the salt stress response. Plant J. 30, 529-539   DOI   ScienceOn
22 Gao, M.J., Allard, G., Byass, L., Flanagan, AM., and Singh, J. (2002). Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol. BioI. 49, 459-471   DOI   ScienceOn
23 Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curro Opin. Plant BioI. 6,410-417   DOI   ScienceOn
24 Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A, Parkin, I., Whitwill, S., and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. BioI. 53, 383-397   DOI   ScienceOn
25 SOderman, E., Mattsson, J., and Engstrom, P. (1996). The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 10, 375-381   DOI   ScienceOn
26 Yu, L.X., and Setter, T.L. (2003). Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol. 131,568-582   DOI   ScienceOn
27 Rensink, WA, lobst, S., Hart, A, Stegalkina, S., Liu, J., and Buell, C.R. (2005). Gene expression profiling of potato responses to cold, heat, and salt stress. Funct. Integr. Genomics 5, 201-207   DOI
28 Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant BioI. 57, 781-803   DOI   ScienceOn
29 Fei, H., Tsang, E., and Cutler, AJ. (2007). Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics 89, 419-428   DOI   ScienceOn
30 Schultz, 1.F., Kiyosue, 1., Yanovsky, M., Wada, M., and Kay, SA (2001). A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13,2659-2670   DOI
31 Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, 0., D'Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347-363   DOI   ScienceOn
32 Morinaga, T. (1934). Interspecific hybridisation in Brassica: 6. The cytology of B. juncea and B. nigra. Cytologia 6, 62-67   DOI
33 Zhao, T.J., Sun, S., Liu, Y., Liu, J.M., Liu, Q., Yan, Y.B., and Zhou, H.M. (2006). Regulating the drought-responsive element (DRE)mediated signaling pathway by synergic functions of trans-active and trans-inactive ORE binding factors in Brassica napus. J. BioI. Chern. 281, 10752-10759   DOI
34 Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., and Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103, 12987-12992
35 Takeuchi, T., Watanabe, Y., Takano-Shimizu, T., and Kondo, S. (2006). Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev. Dyn. 235, 2449-2459   DOI   ScienceOn
36 Xiong, L., Schumaker, K.S., and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14, Suppl S165-183   DOI
37 IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change 2007: climate change impacts, adaptation and vulnerability. In Summary for Policymakers. IPCC Working Group II, ed. pp. 1-22
38 Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A, and Giraudat, J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25, 295-303   DOI   ScienceOn
39 Soeda, Y., Konings, M.C., Vorst, 0., van Houwelingen, AM., Stoopen, G.M., Maliepaard, CA, Kodde, J., Bino, R.J., Groot, S.P., and van der Geest, AH. (2005). Gene expression programs during Brassica o/eracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol. 137, 354-368   DOI   ScienceOn
40 Tang, D., Qian, H., Yu, S., Cao, Y., Liao, Z., Zhao, L., Sun, X., Huang, D., and Tang, K. (2004). cDNA cloning and characterization of a new stress-responsive gene BoRS1 from Brassica o/eracea var. acephala. Physiol. Planta 121,578-585   DOI   ScienceOn
41 Yin, H., Li, S., Zhao, X., Du, Y., and Ma, X. (2006). cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol. Biochem. 44, 910-916   DOI   ScienceOn
42 Carlsson, J., Lagercrantz, U., Sundstrom, J., Teixeira, R., Wellmer, F., Meyerowitz, E.M., and Glimelius, K. (2007). Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J. 49, 452-462   DOI   ScienceOn
43 Capel, J., Jarillo, JA, Salinas, J., and Martfnez-Zapater, J.M. (1997). Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol. 115,569-576   DOI
44 Weretilnyk, E., Orr, W., White, T.C., lu, B., and Singh, J. (1993). Characterization of three related low-temperature-regulated cDNAs from winter Brassica napus. Plant Physiol. 101,171-177   DOI   ScienceOn
45 Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. BioI. 47,277-403
46 Yang, KA, Lim, C.J., Hong, J.K., Jin, Z.L., Hong, J.C., Yun, D.J., Chung, W.S., Lee, S.Y., Cho, M.J., and Lim, C.O. (2005). Identification of Chinese cabbage genes up-regulated by prolonged cold by using microarray analysis. Plant Sci. 168,959-966   DOI   ScienceOn
47 Heintzen, C., Nater, M., Apel, K., and Staiger, D. (1997). AtGRP7, a nuclear RNA-binding protein as a component of a circadianregulated negative feedback loop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 8515-8520
48 Kim, S.J., Moon, J., Lee, I., Maeng, J., and Kim, S.R. (2003). Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil. J. Exp. Bot. 54, 1879-1887   DOI   ScienceOn
49 Ashraf, M., and McNeilly, T. (1990). Responses of four Brassica species to sodium chloride. Environ. Exp. Bot. 30, 475-487   DOI   ScienceOn
50 Munshi, SK, Bhatia, N., Dhillon, K.S., and Sukhija, P.S. (1986). Effect of moisture and salt stress on oil filling in Brassica seeds. Proc. Indian Natl. Sci. Acad. B52, 755-759
51 Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., OhmeTakagi, M., Tran, L.S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876   DOI   ScienceOn
52 Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., KozmaBognar, L., Nagy, F., Millar, AJ., and Amasino, R.M. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74-77   DOI   ScienceOn
53 Orr, w., lu, B., White, 1.C., Robert, L.S., and Singh, J. (1992). Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kin/gene. Plant Physiol. 98, 1532-1534   DOI   ScienceOn
54 Shin, D.H., In, J.G., Lim, Y.P., Hasunuma, K., and Choi, K.S. (2004). Molecular cloning and characterization of nucleoside diphosphate (NDP) kinases from Chinese cabbage (Brassica campestris). Mol. Cells 17, 86-94
55 Eguchi, T., Matsumura, T., and Koyama, T. (1963). The effect of low temperature on flower and seed formation in Japanese radish and Chinese cabbage. Proc. Am. Soc. Hort. Sci. 82, 322-331
56 Nakashima, K., Tran, L.S., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stressresponsive gene expression in rice. Plant J. 51,617-630   DOI   ScienceOn
57 Rabbani, MA, Maruyama, K., Abe, H., Khan, MA, Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., and YamaguchiShinozaki, K. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133,1755-1767   DOI   ScienceOn