Genome-wide Expression Profiling of Piperine and Piper nigrum Linne

호초(胡椒)와 Piperine에 의한 총체적 유전자 발현 비교

  • Jo, Eun-Young (Department of Internal Medicine, College of Korean Medicine, Dongguk University) ;
  • Jeong, Ji-Cheon (Department of Internal Medicine, College of Korean Medicine, Dongguk University)
  • 조은영 (동국대학교 한의과대학 내과학교실) ;
  • 정지천 (동국대학교 한의과대학 내과학교실)
  • Received : 2010.08.17
  • Accepted : 2010.10.05
  • Published : 2010.10.25

Abstract

In addition to spice, black pepper (Piper nigrum Linne : PnL) has been used as herbal medicine because of its function in anti-oxidation, anti-inflammation, and anti-carcinogenesis. Recently, it has been reported that piperine, a component of PnL, inhibits adipocyte differentiation by repressing various adipogenic gene expressions. In this study, we determined whether piperine is a major constituent of PnL that confers the anti-adipogenic activity at whole genome level. Differentiation of 3T3-L1 pre-adipocytes was induced in presence of PnL extract or piperine. To compare genes that are regulated by PnL extract or piperine, we performed expression profiling using microarrays (Agilent Mouse 44k 4plex). RNA samples were labeled with Cy3 and Cy5, respectively. Labeled samples were hybridized to the microarrays. Results were filtered and cut off set p<0.05. Genes exhibiting significant differences in expression level were classified into Gene Ontology (GO)-based functional categories (http://www.geneontology.org) and KEGG (http://www.genome.jp/kegg/). Extract of PnL and its component piperine reduced lipid accumulation in 3T3-L1 cells during adipogenesis. Such anti-adipogenic activity appears to result from down-regulation of transcription factor genes involved in adipogenesis, and other genes involved in fatty acid synthesis, transport, triglyceride synthesis, and carbohydrate metabolism. These genome-wide studies lead to conclude that piperine, as a critical component of PnL, plays common role with PnL in anti-adipogenesis.

Keywords

References

  1. Gregoire, F.M., Smas, C.M., Sul, H.S. Understanding adipocyte differentiation. Physiol Rev. 78(3):783-809, 1998. https://doi.org/10.1152/physrev.1998.78.3.783
  2. Trujillo, M.E., Scherer, P.E. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 27(7):762-778, 2006. https://doi.org/10.1210/er.2006-0033
  3. Fajas, L., Schoonjans, K., Gelman, L., Kim, J.B., Najib, J., Martin, G., Fruchart, J.C., Briggs, M., Spiegelman, B.M., Auwerx, J. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 19(8):5495-5503, 1999. https://doi.org/10.1128/MCB.19.8.5495
  4. Kim, J.B., Spiegelman, B.M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10(9):1096-1107, 1996. https://doi.org/10.1101/gad.10.9.1096
  5. Le Lay, S., Lefrere, I., Trautwein, C., Dugail, I., Krief, S. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem. 277(38):35625-35634, 2002. https://doi.org/10.1074/jbc.M203913200
  6. Roh, S.W., Kim, J.B. Effects of Polygonati Rhizoma on the Diet-induced Hyperlipidemia in Rats. Korean J Oriental Physiology & Pathology. 22(5):1147-1151, 2008.
  7. Lin, J., Della-Fera, M.A., Baile, C.A. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res 13(6):982-990, 2005. https://doi.org/10.1038/oby.2005.115
  8. Hassan, M., El Yazidi, C., Landrier, J.F., Lairon, D., Margotat, A., Amiot, M.J. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun 361(1):208-213, 2007. https://doi.org/10.1016/j.bbrc.2007.07.021
  9. 李尙仁. 本草學. 서울, 醫藥社, pp 394-395, 1983.
  10. Bang, J.S., Oh, D.H., Choi, H.M., Sur, B.J., Lim, S.J., Kim, J.Y., Yang, H.I., Yoo, M.C., Hahm, D.H., Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther. 11(2):R49, 2009. https://doi.org/10.1186/ar2662
  11. Vijayakumar, R.S., Nalini, N. Efficacy of piperine, an alkaloidal constituent from Piper nigrum on erythrocyte antioxidant status in high fat diet and antithyroid drug induced hyperlipidemic rats. Cell Biochem Funct 24(6):491-498, 2006. https://doi.org/10.1002/cbf.1331
  12. Bajad, S., Bedi, K.L., Singla, A.K., Johri, R.K. Antidiarrhoeal activity of piperine in mice. Planta Med. 67(3):284-287, 2001. https://doi.org/10.1055/s-2001-11999
  13. Szallasi, A. Piperine: researchers discover new flavor in an ancient spice. Trends Pharmacol Sci. 26(9):437-439, 2005.
  14. Jeong, H.S., Jeong, J.C. Anti-adipogencic Effect of Piper Nigrum Linne. Korean Journal of Oriental Physiology and Pathology. 24(1):118-123, 2010.
  15. Parmar, V.S., Jain, S.C., Bisht, K.S., Jain, R., Taneja, P., Jha, A., Tyagi, O.D., Prasad, A.K., Wengel, J., Olsen, C.E. Phytochemistry of the genus Piper. Phytochemistry. 46(4):597-673, 1997. https://doi.org/10.1016/S0031-9422(97)00328-2
  16. Kaleem, M., Sheema Sarmad, H., Bano, B. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats. Indian J Physiol Pharmacol. 49(1):65-71, 2005.
  17. Jin, Z., Borjihan, G., Zhao, R., Sun, Z., Hammond, G.B., Uryu, T. Antihyperlipidemic compounds from the fruit of Piper longum L. Phytother Res. 23(8):1194-1196, 2009. https://doi.org/10.1002/ptr.2630
  18. Lee, S.W., Rho, M.C., Park, H.R., Choi, J.H., Kang, J.Y., Lee, J.W., Kim, K., Lee, H.S., Kim, Y.K. Inhibition of diacylglycerol acyltransferase by alkamides isolated from the fruits of Piper longum and Piper nigrum. J Agric Food Chem. 54(26):9759-9763, 2006. https://doi.org/10.1021/jf061402e
  19. Sunila, E.S., Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol. 90(2-3):339-346, 2004. https://doi.org/10.1016/j.jep.2003.10.016
  20. Faas, L., Venkatasamy, R., Hider, R.C., Young, A.R., Soumyanath, A. In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br J Dermatol. 158(5):941-950, 2008. https://doi.org/10.1111/j.1365-2133.2008.08464.x
  21. Hamm, J.K., el Jack, A.K., Pilch, P.F., Farmer, S.R. Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake. Ann N Y Acad Sci. 892: 134-145, 1999. https://doi.org/10.1111/j.1749-6632.1999.tb07792.x
  22. Juvet, L.K., Andresen, S.M., Schuster, G.U., Dalen, K.T., Tobin, K.A., Hollung, K, Haugen, F, Jacinto, S, Ulven, S.M., Bamberg, K. On the role of liver X receptors in lipid accumulation in adipocytes. Mol Endocrinol 17(2):172-182, 2003. https://doi.org/10.1210/me.2001-0210
  23. Schoonjans, K., Gelman, L., Haby, C., Briggs, M., Auwerx, J. Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. J Mol Biol. 304(3):323-334, 2000. https://doi.org/10.1006/jmbi.2000.4218
  24. Shimomura, I., Hammer, R.E., Richardson, J.A., Ikemoto, S., Bashmakov, Y., Goldstein, J.L., Brown, M.S. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12(20):3182-3194, 1998. https://doi.org/10.1101/gad.12.20.3182
  25. Zhang, L.L., Yan Liu, D., Ma, L.Q., Luo, Z.D., Cao, T.B., Zhong, J., Yan, Z.C., Wang, L.J., Zhao, Z.G., Zhu, S.J. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res. 100(7):1063-1070, 2007. https://doi.org/10.1161/01.RES.0000262653.84850.8b