• Title/Summary/Keyword: transcription activity

Search Result 1,305, Processing Time 0.032 seconds

Antioxidant and Cytoprotective Effects of Socheongja and Socheong 2, Korean Black Seed Coat Soybean Varieties, against Hydrogen Peroxide-induced Oxidative Damage in HaCaT Human Skin Keratinocytes (HaCaT 인간 피부 각질세포에서 과산화수소 유도 산화 손상에 대한 소청자 및 소총2호의 항산화 및 세포보호 효능)

  • Choi, Eun Ok;Kwon, Da Hye;Hwang, Hye-Jin;Kim, Kook Jin;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.454-464
    • /
    • 2018
  • Black soybeans are used as food sources as well as for traditional medicines because they contain an abundance of natural phenolic compounds. In this study, total phenolic contents (TPCs) of Korean black seed coat soybean varieties Socheongja (SCJ), Socheong 2 (SC2) and Cheongja 2 (CJ2) as well as their antioxidant capacities were investigated. Among them, TPCs were abundantly present in the order of CJ2$H_2O_2$-stimulated HaCaT human keratinocytes. Our results revealed that treatment with SCJ and SC2 prior to $H_2O_2$ exposure significantly increases the viability of HaCaT cells, indicating that the exposure of HaCaT cells to SCJ and SC2 conferred a protective effect against oxidative stress. SCJ and SC2 also effectively inhibited $H_2O_2$-induced apoptotic cell death through the blocking of mitochondrial dysfunction. SCJ and SC2 also attenuated the phosphorylation of Histone H2AX. Furthermore, they effectively induced the levels of thioredoxin reductase (TrxR) 1, a potent antioxidant enzyme, which is associated with the induction of nuclear transcription factor erythroid-2-like factor 2 (Nrf2); however, the protective effects of SCJ and SC2 were significantly reversed by Auranofin, a TrxR inhibitor. These results indicate that they have protective activity through the blocking of cellular damage related to oxidative stress via the Nrf2 signaling pathway. In conclusion, our study indicated that SCJ and SC2 might potentially serve as novel agents for the treatment and prevention of skin disorders caused by oxidative stress.

GATA-3 is a Key Factor for Th1/Th2 Balance Regulation by Myristicin in a Murine Model of Asthma (Myristicin이 Ovalbumin으로 유도한 천식 생쥐모델에서 Th1/Th2 Balance를 조절하는 GATA-3에 미치는 효과)

  • Lee, Kyu;Lee, Chang-Min;Jung, In-Duk;Jeong, Young-Il;Chun, Sung-Hak;Park, Hee-Ju;Choi, Il-Whan;Ahn, Soon-Cheol;Shin, Yong-Kyoo;Lee, Sang-Yull;Yeom, Seok-Ran;Kim, Jong-Suk;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1090-1099
    • /
    • 2007
  • Myristicin, l-allyl-3,4-methylenedioxy-5-methoxybenzene, was one of the major essential oils of nutmeg. However, its anti-allergic effect in the Th1/Th2 immune response was poorly understood. Recently, it was shown that T-bet and GATA-3 was master Th1 and Th2 regulatory transcription factors. In this study, we have attempted to determine whether myristicin regulates Th1/Th2 cytokine production, T-bet and GATA-3 gene expression in ovalbumin (OVA)-induced asthma model mice. Myristicin reduced levels of IL-4, Th2 cytokine production in OVA-sensitized and challenged mice. In the other side, it increased $IFN-{\gamma}$, Th1 cytokine production in myristicin administrated mice. We also examined to ascertain whether myristicin could influence eosinophil peroxidase (EPO) activity. After being sensitized and challenged with ovalbumin (OVA) showed typical asthmatic reactions. These reactions included an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration into the lung tissue around blood vessels and airways, and the development of airway hyper-responsiveness (AHR). The administration of myristicin before the last airway OVA challenge resulted in a significant inhibition of all asthmatic reactions. Accordingly, these findings provide new insight into the immunopharmacological role of myristicin in terms of its effects in a murine model of asthma.

Establishment of Mouse Embryonic Stem Cell-like Cells from In Vitro Fertilized Embryos (체외수정 생쥐 배아에서의 배아 줄기세포 확립)

  • Shin, Yong-Moon;Park, Yong-Bin;Kim, Hee-Sun;Oh, Sun-Kyung;Chun, Dae-Woo;Suh, Chang-Suk;Choe, Young-Min;Kim, Jung-Gu;Lee, Jin-Yong;Kim, Seok-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Objective: In order to acquire the technique for the establishment of human embryonic stem cells (ESe) derived from the human frozen-thawed embryos produced in IVF-ET program, this study was performed to establish mouse ESC derived from the in vitro fertilized embryos. Materials and Methods: After Fl hybrid (C57BL female $\times$ CBA mael) female mice were superovulated with PMSG and hCG treatment, their oocytes were retrieved and inseminated, and the fertilized embryos were cultured for 96-120 hours until the expected stages of blastocysts were obtained. To isolate the inner cell mass (ICM), either the blastocysts were treated with immunosurgery, or the whole embryos were cultured for 4 days. Isolated ICMs were then cultured onto STO feeder cell layer, and the resultant ICM colonies were subcultured with trypsin-EDTA treatment. During the subculture process, ESC-like cell colonies were observed with phase contrast microscopy. To identify ESC in the subcultured ESC-like cell colonies, alkaline phosphatase activity and Oct-4 (octamer-binding transcription factor-4) expression were examined by immunohistochemistry and RT-PCR, respectively. To examine the spontaneous differentiation, ESC-like cell colonies were cultured without STO feeder cell layer and leukemia inhibitory factor (LIF). Results: Seven ESC-like cell lines were established from ICMs isolated from the in vitro fertilized embryos. According to the developmental stage, the growth of ICMs isolated from the expanded blastocysts was significantly better than that of ICMs isolated from the hatched blastocysts (80.3% vs. 58.7%, p<0.05). ESC-like cell colonies were only obtained from ICMs of expanded blastocysts. However, the ICMs isolated from the embryos treated with immunosurgery were poorly grown and frequently differentiated during the culture process. The established ESC-like cell colonies were positively stained with alkaline phosphatase and expressed Oct-4, and their morphology resembled that observed in the previously reported mouse ESC. In addition, following the extended in vitro culture process, they maintained their expression of cell surface markers characteristic of the pluripotent stem cells such as alkaline phosphatase and Oct-4. When cultured without STO feeder cell layer and LIF, they were spontaneously differentiated into the various types of cells. Conclusion: The findings of this study suggest that the establishment of mouse ESC can be successfully derived from the in vitro fertilized embryos. The established ESC-like cells expressed the cell surface markers characteristic of the pluripotent stem cells and spontaneously differentiated into the various types of cells.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

Dietary corn resistant starch regulates intestinal morphology and barrier functions by activating the Notch signaling pathway of broilers

  • Zhang, Yingying;Liu, Yingsen;Li, Jiaolong;Xing, Tong;Jiang, Yun;Zhang, Lin;Gao, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2008-2020
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of dietary corn resistant starch (RS) on the intestinal morphology and barrier functions of broilers. Methods: A total of 320 one-day-old broilers were randomly allocated to 5 dietary treatments: one normal corn-soybean (NC) diet, one corn-soybean-based diet supplementation with 20% corn starch (CS), and 3 corn-soybean-based diets supplementation with 4%, 8%, and 12% corn resistant starch (RS) (identified as 4% RS, 8% RS, and 12% RS, respectively). Each group had eight replicates with eight broilers per replicate. After 21 days feeding, one bird with a body weight (BW) close to the average BW of their replicate was selected and slaughtered. The samples of duodenum, jejunum, ileum, caecum digesta, and blood were collected. Results: Birds fed 4% RS, 8% RS and 12% RS diets showed lower feed intake, BW gain, jejunal villus height (VH), duodenal crypt depth (CD), jejunal VH/CD ratio, duodenal goblet cell density as well as mucin1 mRNA expressions compared to the NC group, but showed higher concentrations of cecal acetic acid and butyric acid, percentage of jejunal proliferating cell nuclear antigen-positive cells and delta like canonical Notch ligand 4 (Dll4), and hes family bHLH transcription factor 1 mRNA expressions. However, there were no differences on the plasma diamine oxidase activity and D-lactic acid concentration among all groups. Conclusion: These findings suggested that RS could suppress intestinal morphology and barrier functions by activating Notch pathway and inhibiting the development of goblet cells, resulting in decreased mucins and tight junction mRNA expression.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells (정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구)

  • Oh, Myung-Ju;Kim, Ji-Hyun;Jhun, Byung Hak
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1383-1391
    • /
    • 2016
  • Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.

Effect of Vinclozolin on the Onset of Puberty in Immature Female Rats (미성숙 암컷 흰쥐의 사춘기 개시에 미치는 Vinclozolin의 영향)

  • An, Na-Kyung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.245-251
    • /
    • 2007
  • Vinclozolin(VCZ), a systemic dicarboximide fungicide, has been used in the control of diseases caused by microorganism of some species in fruits, vegatables and ornamental plants. Although VCZ itself is a very weak antagonist for androgen receptor binding, both melabolites M1 and M2 are effective antagonists. The present study was undertaken to examine whether prepubertal exposure to VCZ affects on the onset of puberty and the associated reproductive parameters such as hormone receptor expressions in female rats. VCZ(10 mg/kg/day) was administered daily from postnatal day 21(PND 21) through the day when the first vaginal opening(V.O.) was observed. Gross anatomy and weight of reproductive tissues were compared to test the VCZ's effects on the cell proliferation. Furthermore, histological studies were performed to assess the structural alterations in the tissues. To determine the transcriptional changes in progesterone receptor(PR), total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). As a result, delayed V.O. was shown in the VCZ group(PND $34.00{\pm}1.22$) compared to the control group(PND $38.20{\pm}1.92$; p<0.01). VCZ treatment significantly decreased the wet weight of ovaries and uteri compared to the control group(p<0.01). Graafian follicles and corpora lutea were observed only in the ovaries from the control animals, while numerous primary, secondary follicles and small atretic follicles were observed in the ovaries from VCZ group. Similarly, hypotrophy of luminal and glandular uterine epithelium was found in the VCZ group. In the semi-quantitative RT-PCR studies, the transcriptional activity of PR in ovary(p<0.01) from VCZ group were significantly lower than those from the control group while in uterus were similar compared with the control group. The present studies demonstrated that the acute exposure to VCZ during the critical period of prepubertal stage could inactivate the reproductive system resulting delayed puberty in female rats.

  • PDF

Screening of Useful Plants with Anti-inflammatory and Antioxidant Activity (항염증 및 항산화 활성 보유 유용 식물 탐색)

  • Lee, Seung-Eun;Choi, Jehun;Lee, Jeong-Hoon;Noh, Hyung-Jun;Kim, Geum-Sook;Kim, Jinkyung;Chung, Hae-Young;Kim, Seung-Yu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.4
    • /
    • pp.441-449
    • /
    • 2013
  • This study was conducted to select some useful plants as functional material candidates. A total of 38 plants were preliminarily screened for the anti-inflammatory and antioxidant activities. The preliminarily selected 8 plants were further investigated to verify the in vitro inhibitory effect on inflammation and oxidative stress. Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) inhibited the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Eupatorium japonicum (leaf) suppressed the expression of cyclooxygenase-2 (COX-2), whereas Boehmeria platanifolia (root) and Prunus yedoensis (branch) inhibited the transcription of nuclear factor-kappa B (NF-${\kappa}B$). Treatment with the extracts ($2.5{\sim}20{\mu}g/ml$) of Abutilon theophrasti (leaf, flower/seed) and Hemistepta lyrata (stem) did not show toxicity on RAW 264.7 cell proliferation, but treatment with $2.5{\mu}g/ml$ of Boehmeria platanifolia (root) exhibited cell toxicity. Carpinus coreana (branch) and Prunus yedoensis (branch) showed potent scavenging activities on peroxynitrite. Akebia quinata (flower), Carpinus coreana (branch), and Prunus yedoensis (branch) effectively inhibited reactive oxygen species (ROS). Abutilon theophrasti (leaf), Boehmeria platanifolia (root), Carpinus coreana (branch), and Eupatorium japonicum (leaf) exhibited strong inhibitory capacity with regard to nitric oxide (NO) production. The results suggested that Abutilon theophrasti (leaf) has in vitro anti-inflammatory and antioxidant activities, and that is a useful functional material candidate.

Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB (Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과)

  • Kim, Mi Jeong;Kim, Ka Hye;Kim, Moon Jeong;Kim, Jin Ik;Choi, Hye Jung;Moon, Ja Young;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB acts as a critical transcription factor for the survival of cells via the induction of antiapoptotic genes. Constitutive activation of NF-κB in many types of solid tumors suggests that the inhibition of NF-κB might prevent or inhibit tumorigenesis. Although a number of studies demonstrated that Hsp70 regulated NF-κB activity, the exact mechanism is not clear. This study investigated the functional relationship of Hsp70 and IKKγ in the regulation of NF-κB activation using expression plasmids of components of the IKK complex. Wild-type and deletion mutants of IKKγ were expressed together with Hsp70, and the combined regulatory effect of Hsp70 and IKKγ on NF-κB activation was assayed. Hsp70 suppressed the activation of NF-κB in a reporter plasmid assay. Hsp70 also suppressed the phosphorylation and degradation of IκBα. The suppressive effect of Hsp70 on NF-κB activation was synergistically elevated by IKKγ. The N-terminal IKKβ binding site, C-terminal leucine zipper, and zinc finger domains of IKKγ were not necessary for the suppressive effect. Furthermore, Hsp70 and IKKγ synergistically suppressed the induction of COX-2 expression by lipopolysaccharides in RAW264.7 cells. These results suggest that overexpression of Hsp70 and IKKγ may be a strategic method for inhibition of NF-κB and related diseases.