Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.4.454

Antioxidant and Cytoprotective Effects of Socheongja and Socheong 2, Korean Black Seed Coat Soybean Varieties, against Hydrogen Peroxide-induced Oxidative Damage in HaCaT Human Skin Keratinocytes  

Choi, Eun Ok (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
Kwon, Da Hye (Anti-Aging Research Center, Dongeui University)
Hwang, Hye-Jin (Department of Food and Nutrition, College of Natural Sciences and Human Ecology, Dongeui University)
Kim, Kook Jin (Genomine Advanced Biotechnology Research Institute, Genomine Inc.)
Lee, Dong Hee (Genomine Advanced Biotechnology Research Institute, Genomine Inc.)
Choi, Yung Hyun (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
Publication Information
Journal of Life Science / v.28, no.4, 2018 , pp. 454-464 More about this Journal
Abstract
Black soybeans are used as food sources as well as for traditional medicines because they contain an abundance of natural phenolic compounds. In this study, total phenolic contents (TPCs) of Korean black seed coat soybean varieties Socheongja (SCJ), Socheong 2 (SC2) and Cheongja 2 (CJ2) as well as their antioxidant capacities were investigated. Among them, TPCs were abundantly present in the order of CJ2-stimulated HaCaT human keratinocytes. Our results revealed that treatment with SCJ and SC2 prior to $H_2O_2$ exposure significantly increases the viability of HaCaT cells, indicating that the exposure of HaCaT cells to SCJ and SC2 conferred a protective effect against oxidative stress. SCJ and SC2 also effectively inhibited $H_2O_2$-induced apoptotic cell death through the blocking of mitochondrial dysfunction. SCJ and SC2 also attenuated the phosphorylation of Histone H2AX. Furthermore, they effectively induced the levels of thioredoxin reductase (TrxR) 1, a potent antioxidant enzyme, which is associated with the induction of nuclear transcription factor erythroid-2-like factor 2 (Nrf2); however, the protective effects of SCJ and SC2 were significantly reversed by Auranofin, a TrxR inhibitor. These results indicate that they have protective activity through the blocking of cellular damage related to oxidative stress via the Nrf2 signaling pathway. In conclusion, our study indicated that SCJ and SC2 might potentially serve as novel agents for the treatment and prevention of skin disorders caused by oxidative stress.
Keywords
Antioxidant; HaCaT cells; Nrf2; Socheongja; Socheong 2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Trouba, K. J., Hamadeh, H. K., Amin, R. P. and Germolec, D. R. 2002. Oxidative stress and its role in skin disease. Antioxid. Redox. Signal. 4, 665-673.   DOI
2 Wei, Y. S., Wung, B. S., Lin, Y. C. and Hsieh, C. W. 2009. Isolating a cytoprotective compound from Ganoderma tsugae: effects on induction of Nrf-2-related genes in endothelial cells. Biosci. Biotechnol. Biochem. 73, 1757-1763.   DOI
3 Wolfle, U., Seelinger, G., Bauer, G., Meinke, M. C., Lademann, J. and Schempp, C. M. 2014. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol. Physiol. 27, 316-332.   DOI
4 www.nongsaro.go.kr
5 Xu, B. and Chang, S. K. 2008. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food Chem. 56, 8365-8373.   DOI
6 Yates, M. S. and Kensler, T. W. 2007. Chemopreventive promise of targeting the Nrf2 pathway. Drug News Perspect. 20, 109-117.   DOI
7 Yoon, J. J., Jeong, J. W., Choi, E. O., Kim, M. J., Hwang-Bo, H., Kim, H. J., Hong, S. H., Park, C., Lee, D. H. and Choi, Y. H. 2017. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes. EXCLI J. 16, 426-438.
8 Ziberna, L., Lunder, M., Moze, S., Vanzo, A., Tramer, F., Passamonti, S. and Drevensek, G. 2010. Acute cardioprotective and cardiotoxic effects of bilberry anthocyanins in ischemia-reperfusion injury: beyond concentration-dependent antioxidant activity. Cardiovasc Toxicol. 10, 283-294.   DOI
9 Alan Mitteer, R., Wang, Y., Shah, J., Gordon, S., Fager, M., Butter, P. P., Jun, K. H., Guardiola-Salmeron, C., Carabe-Fernandez, A. and Fan, Y. 2015. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep. 5, 13961.
10 Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. and Tang, X. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta. 1863, 585-597.   DOI
11 Benzie, I. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239, 70-76.   DOI
12 Chen, Z., Wang, D., Liu, X., Pei, W., Li, J., Cao, Y., Zhang, J., An, Y., Nie, J. and Tong, J. 2015. Oxidative DNA damage is involved in cigarette smoke-induced lung injury in rats. Environ. Health Prev. Med. 20, 318-324.   DOI
13 Blios, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1158-1200.
14 Cebula, M., Schmidt, E. E. and Arner, E. S. 2015. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox. Signal. 23, 823-853.   DOI
15 Ceni, E., Mello, T. and Galli, A. 2014. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J. Gastroenterol. 20, 17756-17772.   DOI
16 Cha, H., Lowe, J. M., Li, H., Lee, J. S., Belova, G. I., Bulavin, D. V. and Fornave, A. J. Jr. 2010. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 70, 4112-4122.   DOI
17 Choi, Y. H., Kim, M. J., Lee, S. Y., Lee, Y. N., Chi, G. Y., Eom, H. S., Kim, N. D. and Choi, B. T. 2002. Phosphorylation of p53, induction of Bax and activation of caspases during $\beta$-lapachone-mediated apoptosis in human prostate epithelial cells. Int. J. Oncol. 21, 1293-1299.
18 Chowdhury, D., Keogh, M. C., Ishii, H., Peterson, C. L., Buratowski, S. and Lieberman, J. 2005. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell. 20, 801-809.   DOI
19 Fu, P. P., Xia, Q., Sun, X. and Yu, H. 2012. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 30, 1-41.   DOI
20 Espinosa-Diez, C., Miguel, V., Mennerich, D., Kietzmann, T., Sanchez-Perez, P., Cadenas, S. and Lamas, S. 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6, 183-197.   DOI
21 Jang, E. H., Moon, J. S., Ko, J. H., Ahn, C. W., Lee, H. H., Shin, J. K., Park, C. S. and Kang, J. H. 2008. Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase. Int. J. Obes (Lond). 32, 1161-1170.   DOI
22 Jang, Y. S. and Jeong, J. M. 2001. Anti-obesity effects of black bean Chungkugjang extract in 3T3-L1 adipocytes and obese mice induced by high fat diet. J. Kor. Soc. Food Sci. Nutr. 40, 1235-1243.
23 Jhan, J. K., Chung, Y. C., Chen, G. H., Chang, C. H., Lu, Y. C. and Hsu, C. K. 2016. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity. Int. J. Cosmet. Sci. 38, 319-324.   DOI
24 Jung, J. H. and Kim, H. S. 2013. The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease. Food Chem. Toxicol. 60, 404-412.   DOI
25 Kang, J. S., Kim, G. Y., Kim, B. W. and Choi, Y. H. 2017. Antioxidative effects of diallyl trisulfide on hydrogen peroxide-induced cytotoxicity through regulation of nuclear factor-E2-related factor-mediated thioredoxin reductase 1 expression in C2C12 skeletal muscle myoblast cells. Gen. Physiol. Biophys. 36, 129-139.   DOI
26 Kammeyer, A. and Luiten, R. M. 2015. Oxidation events and skin aging. Ageing Res. Rev. 21, 16-29.   DOI
27 Kim, S. C., Kwon, H. S., Kim, C. H., Kim, H. S., Lee, C. Y. and Cho, S. J. 2016. Comparison of antioxidant activities of pileus and stipe from white beech mushrooms (Hypsizygus marmoreus). J Life Sci. 26, 928-935.   DOI
28 Kensler, T. W., Wakabayashi, N. and Biswal, S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116.   DOI
29 Keum, Y. S. and Choi, B. Y. 2014. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 19, 10074-10089.   DOI
30 Kim, K., Lim, K. M., Kim, C. W., Shin, H. J., Seo, D. B., Lee, S. J., Noh, J. Y., Bae, O. N., Shin, S. and Chung, J. H. 2011. Black soybean extract can attenuate thrombosis through inhibition of collagen-induced platelet activation. J. Nutr. Biochem. 22, 964-970.   DOI
31 Korea Seed & Variety Service, https://www.seed.go.kr
32 Lee, M. J., Chung, I. M., Kim, H. and Jung, M. Y. 2015. High resolution LC-ESI-TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products. Food Chem. 176, 254-262.   DOI
33 Li, X., Wu, X. and Huang, L. 2009. Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). Molecules 14, 5349-5361.   DOI
34 Loh, K. P., Huang, S. H., De Silva, R., Tan, B. K. and Zhu, Y. Z. 2006. Oxidative stress: apoptosis in neuronal injury. Curr. Alzheimer. Res. 3, 327-337.   DOI
35 Magalhaes, M. S., Fechine, F. V., Macedo, R. N., Monteiro, D. L., Oliveira, C. C., Brito, G. A., Moraes, M. E. and Moraes, M. O. 2008. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Acta. Cir. Bras. 23, 262-269.   DOI
36 Punchard, N. A. and Kelly, F. J. 1996. Free radicals. A practical approach. Oxford University Press, Oxford. 1-8.
37 Patwardhan, J. and Bhatt, P. 2016. Flavonoids derived from Abelmoschus esculentus attenuates UV-B induced cell damage in human dermal fibroblasts through Nrf2-ARE pathway. Pharmacogn. Mag. 12, S129-138.   DOI
38 Piao, M. J., Lee, N. H., Chae, S. and Hyun, J. W. 2012. Eckol inhibits ultraviolet B-induced cell damage in human keratinocytes via a decrease in oxidative stress. Biol. Pharm. Bull. 35, 873-880.   DOI
39 Poljsak, B. and Dahmane, R. 2012. Free radicals and extrinsic skin aging. Dermatol. Res. Pract. 2012, 135206.
40 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 231-1237.
41 Reed, J. C. 2000. Mechanisms of apoptosis. Am. J. Pathol. 157, 1415-1430.   DOI
42 Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P. and Yaffee, M. 1995. Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta. 1271, 67-74.   DOI
43 Rural Development Administration National Institute of Crop Science, Republic of Korea, www.nics.go.kr
44 Sehitoglu, M. H., Farooqi, A. A., Qureshi, M. Z., Butt, G. and Aras, A. 2014. Anthocyanins: targeting of signaling networks in cancer cells. Asian Pac. J. Cancer Prev. 15, 2379-2381.   DOI
45 Slavin, M. and Yu, L. L. 2012. A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans. Food Chem. 135, 2789-2795.   DOI
46 Park, Y. and Gerson, S. L. 2005. DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56, 495-508.   DOI