• 제목/요약/키워드: trajectory-planning

검색결과 314건 처리시간 0.027초

동적 장애물의 속도를 고려한 이동로봇의 궤적 재생성 기법 (Trajectory Regeneration Considering Velocity of Dynamic Obstacles Using the Nonlinear Velocity Obstacles)

  • 문창배;정우진
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1193-1199
    • /
    • 2014
  • 서비스 로봇이 충돌안전성을 확보한 상태에서 고속 주행 임무를 수행하기 위해서는 동적 장애물의 속도를 고려한 궤적 계획이 필요하다. 정적 장애물만을 고려한 상태에서 궤적을 계획하는 경우 장애물과의 상대속도로 인해서 로봇이 장애물과 충돌할 수 있다. 본 연구에서는 동적 장애물의 속도를 고려한 궤적시간조정기법을 제안한다. 제안된 기법을 통해서 기존에 생성된 궤적의 시간을 조정해서 장애물 회피가 가능한지를 평가할 수 있다. 만일 회피가 불가능할 경우 생성된 경로가 아닌 다른 경로를 선택할 수 있다. 모의 시험 결과를 통해서 제안된 기법을 통해서 짧은 시간 내에 장애물 회피를 수행할 수 있음을 보였다.

Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules

  • Sorrentino, L.;Polini, W.;Carrino, L.;Anamateros, E.;Paris, G.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.1-23
    • /
    • 2008
  • Robotized filament winding technology involves a robot that winds a roving impregnated by resin on a die along the directions of stresses to which the work-piece is submitted in applications. The robot moves a deposition head along a winding trajectory in order to deposit roving. The trajectory planning is a very critical aspect of robotized filament winding technology, since it is responsible for both the tension constancy and the winding time. The present work shows two original rules to plan the winding trajectory of structural parts, whose shape is obtained by sweeping a full section around a 3D curve that must be closed and not crossing in order to assure a continuous winding. The first rule plans the winding trajectory by approximating the part 3D shape with straight lines; it is called the discretized rule. The second rule defines the winding trajectory simply by offsetting a 3D curve that reproduces the part 3D shape, of a defined distance; it is called the offset rule. The two rules have been compared in terms of roving tension and winding time. The present work shows how the offset rule enables achievement of both the required aims: to manufacture parts of high structural performances by keeping the tension on the roving near to the nominal value and to markedly decrease the winding time. This is the first step towards the optimization of the robotized filament winding technology.

여유 자유도 로봇의 국부 최적 경로 계획 (Locally optimal trajectory planning for redundant robot manipulators-approach by manipulability)

  • 이지홍;이한규;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1136-1139
    • /
    • 1996
  • For on-line trajectory planning such as teleoperation it is desirable to keep good manipulability of the robot manipulators since the motion command is not given in advance. To keep good manipulability means the capability of moving any arbitrary directions of task space. An optimization process with different manipulability measures are performed and compared for a redundant robot system moving in 2-dimensional task space, and gives results that the conventional manipulability ellipsoid based on the Jacobian matrix is not good choice as far as the optimal direction of motion is concerned.

  • PDF

복소 포텐셜을 이용한 로봇 축구용 다개체 로봇의 경로 계획 (Trajectory Planning of Multi Agent Robots for Robot Soccer Using Complex Potential)

  • 이경희;김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper deals with the trajectory planning of multi agent robots using complex potential theory for robot soccer. The complex potential theory is introduced, then the circle theorem is used to avoid obstacles, and the vortex pair is used to make precise kicking direction of robot. Various situations of robot soccer are simulated and the effect of vortex strength and the speed of robots are discussed and the better way to avoid obstacles and to kick the precise direction is found. The feasibilities of complex potential theory to apply for the multi agent robots are successful.

무인항공기의 비행경로 생성 및 유도제어 알고리즘 연구 : HILS를 통한 검증 (A Study on Flight Trajectory Generations and Guidance/Control Laws : Validation through HILS)

  • 백수호;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1238-1243
    • /
    • 2008
  • This paper presents an HILS(Hardware in the Loop Simulations) based experimental study for the UAV's flight trajectory planning/generation algorithms and guidance/control laws. For the various mission that is loaded on each waypoint, proper trajectory planning and generation algorithms are applied to achieve best performances. Specially, the 'smoothing path' generation and the 'tangent orbit path' guidance laws are presented for the smooth path transitions and in-circle loitering mission, respectively. For the control laws that can minimize the effects of side wind, side slip angle($\beta$) feedback to the rudder scheme is implemented. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether via HILS.

이족 보행 로봇의 궤적의 최적화 계획에 관한 연구 (A Study on the Trajectory Optimization Planning of Biped Walking Machine)

  • 김창부;조현석
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

신경회로망을 이용한 8축 로봇의 충돌회피 경로계획 (Collision-Avoidance Task Planning for 8 Axes-Robot Using Neural Network)

  • 최우형;신행봉;윤대식;문병갑;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.184-189
    • /
    • 2002
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

Repetitive Periodic Motion Planning and Directional Drag Optimization of Underwater Articulated Robotic Arms

  • Jun Bong-Huan;Lee Jihong;Lee Pan-Mook
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.42-52
    • /
    • 2006
  • In order to utilize hydrodynamic drag force on articulated robots moving in an underwater environment, an optimum motion planning procedure is proposed. The drag force acting on cylindrical underwater arms is modeled and a directional drag measure is defined as a quantitative measure of reaction force in a specific direction in a workspace. A repetitive trajectory planning method is formulated from the general point-to-point trajectory planning method. In order to globally optimize the parameters of repetitive trajectories under inequality constraints, a 2-level optimization scheme is proposed, which adopts the genetic algorithm (GA) as the 1st level optimization and sequential quadratic programming (SQP) as the 2nd level optimization. To verify the validity of the proposed method, optimization examples of periodic motion planning with the simple two-link planner robot are also presented in this paper.

신경회로망을 이용한 Dual-Arm 로봇의 충돌회피 최적작업계획 (Optimal Collision-Avoidance Task Planning for Dual-Arm Using Neural Network)

  • 최우형;신행봉;윤대식;문병갑;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.244-249
    • /
    • 2001
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

뉴럴 네트워크를 이용한 Dual-Arm 로봇의 충돌회피 최적작업계획 (Optimal Collision-Avoidance Task Planning for Dual-Arm Using Neural Network)

  • 최우형;정동연;배길호;김인수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.113-118
    • /
    • 2000
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. Path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF