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Repetitive Periodic Motion Planning and Directional Drag Optimization
of Underwater Articulated Robotic Arms

Bong-Huan Jun, Jihong Lee, and Pan-Mook Lee

Abstract: In order to utilize hydrodynamic drag force on articulated robots moving in an
underwater environment, an optimum motion planning procedure is proposed. The drag force
acting on cylindrical underwater arms is modeled and a directional drag measure is defined as a
quantitative measure of reaction force in a specific direction in a workspace. A repetitive
trajectory planning method is formulated from the general point-to-point trajectory planning
method. In order to globally optimize the parameters of repetitive trajectories under inequality
constraints, a 2-level optimization scheme is proposed, which adopts the genetic algorithm
(GA) as the 1st level optimization and sequential quadratic programming (SQP) as the 2nd
level optimization. To verify the validity of the proposed method, optimization examples of
periodic motion planning with the simple two-link planner robot are also presented in this paper.

Keywords: Directional drag, drag optimization, repetitive motion planning, underwater robot.

1. INTRODUCTION

In recent years, underwater robot technologies have
been evolved to satisfy the wide and various
requirements for underwater missions. Despite such
progress in underwater robot technologies, the
missions are still in need of robots with more versatile
capabilities and higher efficiency. In order to enhance
the capabilities and efficiency of underwater robots, a
great deal of attention has been attracted to the
locomotion of underwater creatures such as fishes,
marine mammals, and aquatic insects. Many pervious
studies have been carried out to utilize the mechanism
of underwater animals for underwater robots. Various
swimming modes of fishes are enumerated and the
analytical method for their propulsive mechanism is
overviewed in [1]. In [2-6], the propulsive and
maneuvering locomotion of fish is studied and
imitated for enhancing the performance and efficiency
of underwater vehicles. Previous work [3] attempted
to determine the relation between the performance of

Manuscript received February 28, 2005; revised September
7, 2005; accepted December 1, 2005. Recommended by Editor
Jae-Bok Song under the direction of past Editor-in-Chief
Myung Jin Chung. This work was supported by the Ministry
of Marine Affairs and Fisheries (MOMAF) of Korea for the
development of deep-sea unmanned underwater vehicle.

Bong-Huan Jun and Pan-Mook Lee are with the Maritime
and Ocean Engineering Research Institute (MOERI), a branch
of the Korea Ocean Research and Development Institute
(KORDI), Daejeon 305-343, Korea (e-mails: {bhjeon, pmlee}
@moeri.re.kr).

Jihong Lee is with the Mechatronics Engineering
Department, Chungnam National University, Daejeon 305-764,
Korea (e-mail: jihong@cnu.ac.kr).

the fish robot and the motion of the tail fin based on
experimental study. The tail of the fish robot has two
links at the tail peduncle and the tail fin. The
frequency, amplitude, and phase of motion of joints
are investigated for better propulsion and turning
performance in the study. However, the mathematical
model of the articulated link is not constructed and
there is no consideration of the mathematical dynamic
model of links in the works. Previous work [6]
assessed the swimming speed and turning
performance of rigid biological systems with a high-
speed video system. It is observed in the study that the
whirligig beetles, which propel themselves by drag-
stroke of 2-link paddle-like legs shown in Fig. 1, can
swim up to 0.55 m/s. But it has not been attempted to
utilize the drag force with rigid robotic arms by
mimicking the beetles.

The purpose of this study is to find the optimal
drag-stroke of articulated robots to utilize the reaction
drag force. The motion of the whirligig beetle
introduced in [6] might be one of several good
examples to explain the purpose of this problem. The
concept of the purpose is depicted as in Fig. 2. As
shown there, the problem to be solved in this study is
to find a trajectory of articulated underwater arms
maximizing total drag force in a specific direction
during a period of motion.

The studies on underwater manipulators are found
in [7-9] and the references are there-in. The modeling
of underwater manipulators is carried out for efficient
dynamic simulation in [7]. Because the authors are
focused on the efficient calculation of dynamics,
iterative N-E equations of motion are adopted in the
study. Path planning of the underwater-vehicle-
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Fig. 1. Whirligig beetle (figure from [6]).

manipulator-system (UVMS) is treated in [8]. In the
works, total drag encountered by the UVMS is
minimized by the resolution of kinematic redundancy.
Basically, since the method is based on the gradient of
quadratic function of drag, the method solves the local
optimization problem. On the other hand, a large
number of approaches are reported to investigate the
optimal trajectories of industrial manipulators on land
to enhance their performance [10-13]. Most of them
have treated the problem of point-to-point trajectory
planning or the collision avoidance problem.
Therefore, they have adopted the traveling time or
power consumption of manipulators as an objective to
be optimized. In [13], the deformation of the flexible
manipulator is optimized for trajectory planning.

In this paper, an optimum motion planning
procedure is proposed to utilize hydrodynamic drag
force on articulated underwater robots. The drag force
acting on cylindrical links is modeled as variables of
joint angles, joint velocities, and fluid velocities
explicitly, which may be convenient to manipulator
analysis in off-line. As a quantitative measure of drag
force in a specific direction in a workspace, a measure
of directional drag of articulated underwater robots is
proposed. Repetitive trajectory planning in joint space
is formulated from the general point-to-point
trajectory planning method by enforcing the end point
of the trajectory to the start point with continuity
condition.

To establish optimal trajectory of underwater arms,
the parameters composing coefficients of the
trajectory polynomial are searched by optimization
procedure with adaptation of the directional drag
measure as an objective function. In order to search
the optimal solution efficiently, we propose a 2-level
optimization procedure. Two level optimization uses
the sequentially genetic algorithm (GA) and
sequential quadratic = programming (SQP) as
optimization tools for constrained and bounded global
optimization problems. To verify the validity of the
proposed method, an example of optimal periodic
motion planning of a simple two-link planner robot is
presented.

Directional drag

Fig. 2. Concept of drag utilization of articulated
underwater robot by optimizing directional
drag force.

In the following Section 1, generalized drag torque
of underwater manipulators is described by joint
angles and velocities, and then the directional drag
force is defined. Repetitive trajectory planning is
derived from general point-to-point trajectory
planning in Section 2 while optimization using the 2-
level procedure is described in Section 3. Section 4 is
devoted to case studies of the proposed method and
concluding remarks are made in Section 5.

2. DIRECTIONAL DRAG FORCE

In this section, the dynamics of articulated
underwater robots are briefly reviewed and the
hydrodynamic drag term in the dynamic equation is
modeled by describing drag torque using the fluid
velocities, joint angles, and joint velocities under
several assumptions for simplicity. The drag torque is
transformed to the drag force in a workspace using the
Jacobian and inertial matrix of robots. Projecting the
workspace drag force to an arbitrary direction vector,
we define a measure of directional drag force in a
workspace, which can be used as an index to evaluate
magnitude of drag force in a specific direction with
respect to workspace coordinates. This measure is
used in Section 4 as an objective function for drag
optimization.

2.1. Dynamics of underwater robots

When the n degrees-of-freedom articulated robot
moves in an underwater environment, the dynamic
equation of the robot can be described as

M(q) q +C(q, 9) + D(q, ) + G(q) =7, (M

where M e R is inertia matrix including added
mass, CeR"” is the Coriolis and centrifugal term
caused by rigid body and added mass, De®R”is
hydrodynamic drag and lift force term, G eR” is

the buoyancy and gravity term, and te®R” is the
joint torque vector.
The hydrodynamic drag force acting on a rigid
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Fig. 3. Link coordinate system of underwater arm.

body can be decomposed into shear drag and pressure
drag. Since the shear drag will be small for an
underwater robot, we handle only the pressure drag as
many previous works have done [7,9,17]. For
simplicity, we assumed that the lift force resulting
from the robot posture is negligible, that all of the
links are cylindrical solid, and that the cylinders are
fully submerged in addition to the lumped
approximation for the forces and the assumption of
unbounded and irrotational fluid. Then, the drag term
D in (1) is to be a function of joint angles, joint
velocities, fluid velocity, and hydrodynamic coefficients
determined by the geometries of the links. To describe
the drag term explicitly, the approach starts from the
link coordinate system shown in Fig. 3.

Assuming the j-th link is partitioned into disk slices
with small thickness of d/, we can write the drag force
acting on a disk in fluid with respect to the (i-1)-th
coordinate system as

d"d; =—pCpR; | p; | pjdl, )

where p is water density, Cy and R, are drag

coefficient and radius of j-th link respectively, and

- p; 1s magnitude of translational velocity vector

normal to the edge of disk expressed in (i-1)-th

i-1

coordinates. p; » which can be obtained by

projecting the relative disk velocity with respect to
velocity of fluid to the unit vector in the y-axis of j-th
coordinates as

i _ il i—1 T i-1
Pj—( A\ ve) €y (3)

where ij and ch
and fluid with respect to the (i-1)-th frame,

. T . - .
respectively. (-)" is vector transpose, and “'e,, is y-

are velocity vectors of disk

axis unit vector of j-th link coordinates expressed in

(i-1)-th coordinates. As the surface integral can be
replaced with line integral by strip theory, drag force
on the j-th link expressed in the (i-1)-th coordinate
system can be written as

- [ . .
! ldjz_pCDjRj _[Oj|l 1Pj|l lpjdl- “4)

Then, the drag torque on the i-th joint caused by drag
force on the j-th link can be written as

— Ji-l
Tai,;j = —PCpiR;cosa; y ; j; v 5)

: -1 i-1
sin f3; 4 | l pjl l p;dl,

where «;_) ;

is twist angle between the z,, and
z; axis, “'; is magnitude of "'r,, position vector
from (i-1)-th frame to disk slice on j-th link, and
Bi-1,; is angle between “'r;and 'py.

Now, we get drag torque expressed by joint angles

and velocities by introducing the relation between
Hy ; and O as

g o
! lvjzzl lUjkBkJrja (6)
k=1

FIU- Ei i_lA,: i_lAk—le_]Aj for ij
*=%0, 7o

fork>j’
(7
0 -1 00
Q:1000 ®
0 0 0 0
0 0 00

i']Aj is homogeneous coordinate transformation matrix
from (i-1)-th frame to j-th frame and ’r; is position
vector of disk slice on j-th link expressed in j-th frame.
After replacing the definite integral in (5) with
numerical integration, we substitute (6) into (3) and
(3) into (5). Collecting all the drag forces affecting the
i-th joint, we finally write the drag term in (1) as

D(0,0)=[z,,,74 1, 9)
n
Tdi = Z Tdi,
T (10)

n
= pz{CDjRj cosa;
J=i

N

) . . l;
i—1 . i-1 i—-1
: 2,( ”j,xsmﬂiq,j‘ Pj‘ ijﬂy

x=1
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k=1

where s is number of disk slices and i'lrj,x is
magnitude of position vector, "lrj,x, from (i-1)-th
coordinate system to x-th slice of j-th link.

2.2. Directional drag force in task space

The drag term derived in the previous section is
transformed to the drag force in a workspace using the
Jacobian and inertial matrix of robots. Projecting the
drag force to the directional vector, we define a
measure of directional drag force in this subsection.

Assuming that an n-degrees-of-freedom robot is
working in an m-dimensional workspace, we can
generally express the relationship between joint

velocity vector, 8 R”, and end-effector velocity, ¥,
using Jacobian matrix J(6) by

r=J(0)0. (12)

Differentiating (12) with respect to time and using (1)
we get the following dynamic equation in a workspace.

F-J0+IM'(C+G)+IM'D=IM"'t  (13)

The term JM 1D e R” represents transformation of
joint drag torque in a joint space to the end-effector
acceleration in a workspace. Since this term is
induced by drag forces of links, we refer to this term
as ‘drag acceleration’. The drag acceleration in a
specific direction of a workspace can be obtained by
projecting the term to the direction vector by

fy=el-aM7'D, (14)

where e, is specific direction vector satisfying|e || =1.

We define (14) as the ‘directional drag acceleration’
of the end-effector. When the end-effector is
accelerated by the directional drag acceleration, the
reaction force acts on the base of the arm in the
opposite direction, —e; . Neglecting the variation of

mass matrix and assuming that the reaction drag force
is proportional to the drag acceleration of the end-
effector, we adopt the directional drag acceleration as
a measure of the directional drag force.

In addition, as a measure of drag force efficiency,
we define the drag force efficiency in a workspace.
Since the right hand of (13) represents the total input
acceleration caused by the total joint torque, we can
define a measure of drag-force-efficiency by dividing
(14) by total input acceleration in the workspace as

el - IM'D|

T (15)
[ IM x|

7

3. REPETITIVE MOTION PLANNING

3.1. Quintic polynomial

In general trajectory planning problems of
manipulators, the time history of all joint variables
and their two time derivatives are planned to achieve
desired motion. If initial and final conditions on joint
angles, velocities, and accelerations are given, the
quintic polynomial can be used for the planning of
each joint trajectory. The quintic polynomial path of
the j-th joint is described as

0;(t)=a;y +aj’1t+aj,2t2 +aj73t3 +aj,4t4 +aj’5t5
j=1 2 - n,

(16)
where »n is the number of joints and the unknown
coefficient a; can be determined from the known
initial and final conditions. When a robot moves
repetitively along the given periodic trajectory, the
initial and final point share the same positions,
velocities, and accelerations because of its continuity
conditions. Replacing the final conditions (o,

g, fand 0, f) with the initial conditions (Hj,o’ 6, ‘Oand

8 ,), we have each of the coefficients in (16) as

a0 =60, (17)
aj1=00, (18)
g.
7,0
a : :—’ 19
/;2 2 ( )
200,426, ,T
aj;= & 5 L (20)
2T
308, +6; T
aj = —I—I—, 1)
2T
—66.
_ J,0
ajs= . (22)

where T is time period of motion, and g

07 9']_.0 , and

él_ , are initial angle, velocity and acceleration of j-th

joint, respectively. Therefore, the trajectory
optimization problem in the quintic polynomial is to

find optimal initial conditions, 0,45 gjo, é,;o and

time period 7 under the given joint and torque
constraints.

3.2. 4-3-4 polynomial

If the positions of two via points are given, either
the 4-3-4 or 3-5-3 polynomial can be used for motion
planning. In the case of 4-3-4 polynomial trajectories,
the j-th trajectory section of the i-th joint is described

by
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2 3 4
gi,j (f) = Ai,j,O + Al,j,lt + Az,],2t + Al,j,3t + Al,j,4t
i=l-oun, j=1,2, 3, 4,,=0.  (23)

The t in (23) is normalized time variable defined with
real time 7as

T-T;_
f=— I (24)

where 7; is real time at the start point of the j-th
trajectory segment. The coefficients of 4-3-4
trajectories can be determined from the known
position and continuity conditions with normalized
time ¢ as

A0 =0:1(0), 450 =0,1(1), 430 =6,3(0) ,(25)

1

A =via O, Aia1 =3, 431 = %6, (26)
a;;(0) B

A= by, Aiss=Xi4, 432 =x7, (27)

A3 =%1,423=%5,433=%3, (28)

Aia=%2 Ai24=0,434=x%9, (29)

where 1L,=7,-T, and X, is the k-th element of

the solution vector of the following linear algebraic
equation.

Cix;=b;, (30)
where C; is banded structure matrix given as
1 0
3 4 0
IZ
2
6 12 o - XL
t2
! ! 1
1 2 3 - L
s
2 6 0 CLE
t3
! I Lo
0 1 2 34
2 6 12

31)

and b, is given as follows:

a; (0) 2
12 7, —vi (O —a;, (0 (32)

=85, 0, 0, 83, v (05, a, (037,

b; =[5 — v, (O)n —

where 5, =6, ()-8, ;(0). Note that the final velocity

and acceleration are replaced with the initial ones in
the last two elements of b; because of the repetitive
condition. Then the trajectory optimization problem

becomes to find the initial condition, 0,4 gj 0 9']_0,

via points, and time period of motion.
Even when there are more than two inter knot
points, repetitive trajectories are easily planned based

on general 3-3-3-3-3 or 3--:-3-5 polynomial trajectory
planning methods. However, the larger number of
optimizing parameters requires the longer time
consumption of optimization process.

4. GLOBAL OPTIMIZATION STRATEGY

In this section, we discuss the optimization of
repetitive motion taking into account dynamic
equations of motion as well as bounds on joint
positions, velocities, jerks and torques. Main
difficulties of trajectory optimization of robotic arms
come from the highly nonlinear-coupled dynamics
and the high search dimension of trajectory space. The
sequential quadratic programming, a representative
nonlinear programming, is successfully used for
constrained optimization with a bounded search space.
However, the convergence of SQP depends highly on
the initial estimation of solution because it uses the
gradient information. Thus, it frequently may go into
local minima for the highly nonlinear function unless
there are many trials with various initial solutions.

The genetic algorithms of which detailed
descriptions are found in [11,12,14,15] are adaptive,
heuristic, probabilistic, iterative and global searching
algorithms that mimic the mechanism of natural
biological evolution. The GAs operate effectively on
global optimization in a near optimal way because
they find a population of solutions rather than a single
solution. Moreover, GAs do not require a complete
system model, and they can also perform multi-point
searches. But unfortunately, their application is
limited to the unconstrained optimization problem
because there has been no method built into genetic
algorithms for handling nonlinear equality or
inequality constraints until now. One of the
approaches to overcome the difficulty is to apply the
penalty function, which gives a penalty to those
solutions that violate constraints. However, the
difficulties in determining the strength of the penalty
leading to proper results still remains to be a problem.

In this study, we propose a global optimization
scheme using both the GA and SQP. The GA searches
overall solution space maximizing the fitness function
with initial host population chosen randomly. The
constraint is considered by the penalty function. We
refer to this as st level optimization. Then the near
optimal solution obtained from GA becomes the
initial solution of SQP algorithm. The SQP completes
the global optimization procedure by searching a fine
optimal solution. We refer to this as 2nd level
optimization from here on. In 1st level optimization,
the inequality constraints are taken into account in the
fitness function, ¢, of GA as

¢=f—<§ZZ(IX,-l—1)’ (33)
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Fig. 4. Cost function for inequality constraints

where fis an objective function to be maximized in
the GA, (|x,|-1) is normalized inequality constraints,

k is number of inequality constraints, () is a
nonlinear function defined as

when | x, [<1 34
z0= {1+ax when | x, [>1, G4

& is weight factor for the constraint that determines
the strength of total penalty, while ¢; is an individual
weight factor that determines the contribution level of
each constraint to the penalty function. The second
term of right hand in (33) becomes penalty function p
as depicted in Fig. 4.

In the repetitive trajectory planning problem of
underwater robotic arms, total drag during periodic
motion is the main concerning factor involved in the
optimization. Since both joint angle and angular
velocity affect the total drag, the optimization problem
is then to find a combination of time series for joint
angles and angular velocities in a time interval. If the
situation in Fig. 2 is considered, the integration of
directional drag can be an objective function as

- p

Adopting (35) as an objective function of the

-IM~'Ddr . (35)

optimization process and eg as the y-axis unit vector,

we can find optimal periodic motion that maximizes
drag in forward (downward) swing and minimizes
drag in backward (upward) swing during a time period.
If it is necessary to optimize the efficiency cost of the
robotic arm, alternative objective function can be used
using (15).

T M 'D
J‘ |ed J | (36)

| JM™ ]
If the joint constraints are considered in the

optimization process such as limitation of joint angles,
angular velocities, accelerations, and torques, the
optimization problem is described as follows:

Find optimal parameters, which minimizes the
objective function given in (35) or (36) subject to:

o 6,56, (i=1-,n),
o €6, (=1,
6,056, (i=1--,n), (37)
O 6,50, (i=1,,m),
T ST, 27, (=1-,n).

Even though the bounds of joints in (37) are different
from each other, they can be easily normalized so that
they can be substituted to (34) by the following vector
transformation.

x=DO+xg, (38)
where 6=[6,,- ~,9n]T, and
D = diag 2 2 }, (39)
l,max — el,min Hn,max - en,min

XOE

el,max -6 1,min en,max -0 n,min

T

{_ el,max +61,min L en,max +9n min :| . (40)

In quintic polynomial trajectory planning, the total
parameters to be determined by the optimization
process are the joint angles, angular velocities,
angular accelerations of initial point, and period time
of motion (3n+1 parameters). In 4-3-4 trajectory
planning, joint angles, angular velocities, angular
accelerations of initial point, and joint angles of two
intermediate points (S» parameters) need to be
determined when the time period and execution time
of each trajectory segment is fixed. If total execution
time is fixed but time of each segment is not fixed, the
total parameter becomes 7n.

5. TWO-LINK ROBOT EXAMPLE

5.1. Drag Force on 2-link Robot

By wusing the proposed method, a repetitive
polynomial trajectory of general n-dimensional
articulated robotic arms can be planned subjected to
the drag optimization.

In this section, a repetitive motion planning
example using the quintic polynomial is described

Table 1. Parameters of planner 2-link robot.

Length of each link (/) I m
Radius of each link (R)) 0.1m
Water density (p) 1,000 kg/m’
Mass of each link (m;,) 933 kg
Added mass of each link (m;,) -9.3 kg
Drag coefficient of each link (Cp;) 0.2
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Table 2. Joint constraints of 2-link robot.

Item |Angle(degree)[Velocity(rad/s)| Accel.(rad/s?)| Jerk(rad/s*) | Torque(Nm)

Joint 1 2 1 2 1 2 1 2 1 2

Max. |+1.57 | +3.14 [ +1.05 | +1.05 [+1.57 [ +1.57 | +2.5 | +2.5 [ +250 | +150

Min. | -1.57 | -3.14 [ -1.05 { -1.05 } -1.57 | -1.57 | -2.5 | -2.5 | -250 | -150

with a simple planner 2-link robot. Its link parameters
are listed in Table 1 and joint constraints are shown in
Table 2. We can calculate the inertia matrix, Coriolis
and centrifugal term and drag term from robot
parameters using the following equations.
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Fig. 5. Optimized trajectory by 1st level optimization
(T=6s, f=-1.5286,g=0.1211).
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Fig. 6. Optimized trajectory by 2nd level optimization
(T=6s, f=-1.9558, g=0.1613).
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01’1 =(0U||9] Oﬁ,x_orc)r OAley (43)

p, ={(0U219] 0"2,1)*(0U22€z Orz.x)— Orc}T CAge,

'py= {(lex'gl ]"z,x)*'(]Uzzéz I"z_x) - I"c}r lAzey

where m,=m,—m, , and the zero velocity of

surrounding fluid is assumed.

If we neglect the buoyancy and gravity term, the
dynamic equation of the underwater arm becomes

T=M0+C+D. (44)
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Fig. 7. Optimized trajectory with tight torque con-

straints (7=6s, f

~1.2275, g=0.1699).

5.2. First level trajectory optimization with GA

Fig. 5 shows the 1st level optimization results using
GA with fitness function in (33). The directional
vector that is the direction of drag to be optimized is
chosen as unit vector in the y-axis of workspace
coordinates. The weight factors £ and ¢; are chosen as
10 and 0, respectively. The time period of motion is
fixed as 6 seconds. The GA is converged after about
50 generations. Optimized directional drag force fis -
1.5286 and efficiency measure g is 0.1211. The time
series of robot configurations resulted from
optimization is depicted in Fig. 5(a). In Fig. 5(¢c), it is
found that the lower extreme points of joint velocities
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jectory (7=10.29s, f=— 2.1159, g = 0.2363).
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are reached at the lower bound of joint velocities. But
Fig. 5 is near optimal solution rather than optimal
solution. So we perform the 2nd level optimization
procedure in the next subsection.

5.3. Second level trajectory optimization with SQP
Selecting the solution of 1st level optimization
performed with GA as an input solution of SQP, we
perform the 2nd level optimization procedure. The
optimized results are shown in Fig. 6. The optimized
directional drag f and efficiency measure g are
—1.2275 and 0.1699, respectively. We verify that the
objective function value is improved by about 30%
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Fig. 9. Efficiency & time-period optimized tra-
jectory (T=11. 96s, f=—1.1900, g=0.2834).

via 2nd level optimization. Noting that the amplitude
of velocities of Fig. 5 and Fig. 6 are nearly identical,
we can find that the arm postures are more optimized
in 2nd level optimization than in the 1st level. Fig. 7
shows the 2nd level optimization results when the
joint torque is constrained more tightly as |z, |<200

and |z, |<100. As we can suppose, the swing angles

of both joints and the velocity of the second joint are
decreased due to the torque constraint of the first joint.

5.4. Optimal time period and optimal efficiency

In the previous subsections, the time period is fixed
as 6 seconds in the optimization process. In this
subsection the time period of swing motion is also
optimized in the optimization process. Fig. 8 shows
drag optimization results when the boundary of time
period is given as 5<7 <20. Optimal directional
drag force is obtained at 10.29 seconds of time period
as —2.1159. The first joint angle swings fully from
its lower limit to upper limit. The velocity constraint
of the first joint is the main factor to restrict the drag
force in this case.

When we choose the efficiency measure in (36) as
an objective function, the optimization is resulted as
indicated in Fig. 9. The optimized efficiency is 0.2834
while the directional drag is —1.1900 at 11.96 seconds
of time period. Comparing Fig. 8(a) and (c) with Fig.
9(a) and (c), we verified that despite the affect of both
postures and joint velocities to the drag force, the drag
force is more dependant on the joint velocities, while
the efficiency is more dependant on the joint postures.

6. CONCLUSION

As one way of utilizing hydrodynamic drag, the
directional drag optimization method for periodic
trajectories of underwater robotic arms is presented.
Hydrodynamic drag force acting on underwater arms
is modeled and a directional drag measure is defined
as a quantitative measure in a specific direction of a
workspace. The periodic motion planning method is
formulated and the parameters of periodic trajectories
are optimized adopting the proposed directional drag
measure as an objective function. To find the global
optimum solution of trajectories in the consideration
of inequality constraints, a 2-level optimization
procedure is presented. As 1st level optimization, the
genetic algorithm searches globally near the optimal
solution. The inequality constraints are taken into
account by a penalty function proposed in this study.
As 2nd level optimization, the sequential quadratic
programming algorithm searches the fine optimal
solution of the problem adopting the solution of 1st
level optimization as an initial solution. From the
simple 2-link example, it is verified that the periodic
motion of an underwater arm is successfully planned
and optimized with the proposed procedure.



Repetitive Periodic Motion Planning and Directional Drag Optimization of Underwater Articulated Robotic Arms 51

Since the proposed method is developed under the
assumption that the type of polynomial for trajectory
is given, it is remained as a future work of the study to
investigate whether the best polynomial or
combination of polynomials gives the best trajectory.
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