• Title/Summary/Keyword: trajectory recognition

Search Result 96, Processing Time 0.025 seconds

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

Gesture Recognition Algorithm by Analyzing Direction Change of Trajectory (궤적의 방향 변화 분석에 의한 제스처 인식 알고리듬)

  • Park Jahng-Hyon;Kim Minsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.121-127
    • /
    • 2005
  • There is a necessity for the communication between intelligent robots and human beings because of wide spread use of them. Gesture recognition is currently being studied in regards to better conversing. On the basis of previous research, however, the gesture recognition algorithms appear to require not only complicated algorisms but also separate training process for high recognition rates. This study suggests a gesture recognition algorithm based on computer vision system, which is relatively simple and more efficient in recognizing various human gestures. After tracing the hand gesture using a marker, direction changes of the gesture trajectory were analyzed to determine the simple gesture code that has minimal information to recognize. A map is developed to recognize the gestures that can be expressed with different gesture codes. Through the use of numerical and geometrical trajectory, the advantages and disadvantages of the suggested algorithm was determined.

A Study on Intelligent Trajectory Control for Prosthetic Arm by Pattern Recognition & Force Estimation Using EMG Signals (근전도신호의 패턴인식 및 힘추정을 통한 의수의 지능적 궤적제어에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.455-464
    • /
    • 1994
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMG signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

Dynamic Human Activity Recognition Based on Improved FNN Model

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.417-424
    • /
    • 2012
  • In this paper, we propose an automatic system that recognizes dynamic human gestures activity, including Arabic numbers from 0 to 9. We assume the gesture trajectory is almost in a plane that called principal gesture plane, then the Least Squares Method is used to estimate the plane and project the 3-D trajectory model onto the principal. An improved FNN model combined with HMM is proposed for dynamic gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network. The proposed algorithm shows that satisfactory performance and high recognition rate.

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.133-142
    • /
    • 2021
  • Travel pattern recognition is widely used in many aspects such as user trajectory query, user behavior prediction, interest recommendation based on user location, user privacy protection and municipal transportation planning. Because the current recognition accuracy cannot meet the application requirements, the study of travel pattern recognition is the focus of trajectory data research. With the popularization of GPS navigation technology and intelligent mobile devices, a large amount of user mobile data information can be obtained from it, and many meaningful researches can be carried out based on this information. In the current travel pattern research method, the feature extraction of trajectory is limited to the basic attributes of trajectory (speed, angle, acceleration, etc.). In this paper, permutation entropy was used as an eigenvalue of trajectory to participate in the research of trajectory classification, and also used as an attribute to measure the complexity of time series. Velocity permutation entropy and angle permutation entropy were used as characteristics of trajectory to participate in the classification of travel patterns, and the accuracy of attribute classification based on permutation entropy used in this paper reached 81.47%.

Trajectory Recognition and Tracking for Condensation Algorithm and Fuzzy Inference (Condensation 알고리즘과 퍼지 추론을 이용한 이동물체의 궤적인식 및 추적)

  • Kang, Suk-Bum;Yang, Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.402-409
    • /
    • 2007
  • In this paper recognized for trajectory using Condensation algorithm. In this pater used fuzzy controller for recognized trajectory using fuzzy reasoning. The fuzzy system tract to the three-dimensional space for raw and roll movement. The joint angle ${\theta}_1$ of the manipulator rotate from $0^{\circ}\;to\;360^{\circ}$, and the joint angle ${\theta}_2$ rotate from $0^{\circ}\;to\;180^{\circ}$. The moving object of velocity display for recognition without error using Condensation algorithm. The tracking system demonstrated the reliability of proposed algorithm through simulation against used trajectory.

Methods for Swing Recognition and Shuttle Cock's Trajectory Calculation in a Tangible Badminton Game (체감형 배드민턴 게임을 위한 스윙 인식과 셔틀콕 궤적 계산 방법)

  • Kim, Sangchul
    • Journal of Korea Game Society
    • /
    • v.14 no.2
    • /
    • pp.67-76
    • /
    • 2014
  • Recently there have been many interests on tangible sport games that can recognize the motions of players. In this paper, we propose essential technologies required for tangible games, which are methods for swing motion recognition and the calculation of shuttle cock's trajectory. When a user carries out a badminton swing while holding a smartphone with his hand, the motion signal generated by smartphone-embedded acceleration sensors is transformed into a feature vector through a Daubechies filter, and then its swing type is recognized using a k-NN based method. The method for swing motion presented herein provides an advantage in a way that a player can enjoy tangible games without purchasing a commercial motion controller. Since a badminton shuttle cock has a particular flight trajectory due to the nature of its shape, it is not easy to calculate the trajectory of the shuttle cock using simple physics rules about force and velocity. In this paper, we propose a method for calculating the flight trajectory of a badminton shuttle cock in which the wind effect is considered.

Selection of features and hidden Markov model parameters for English word recognition from Leap Motion air-writing trajectories

  • Deval Verma;Himanshu Agarwal;Amrish Kumar Aggarwal
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.250-262
    • /
    • 2024
  • Air-writing recognition is relevant in areas such as natural human-computer interaction, augmented reality, and virtual reality. A trajectory is the most natural way to represent air writing. We analyze the recognition accuracy of words written in air considering five features, namely, writing direction, curvature, trajectory, orthocenter, and ellipsoid, as well as different parameters of a hidden Markov model classifier. Experiments were performed on two representative datasets, whose sample trajectories were collected using a Leap Motion Controller from a fingertip performing air writing. Dataset D1 contains 840 English words from 21 classes, and dataset D2 contains 1600 English words from 40 classes. A genetic algorithm was combined with a hidden Markov model classifier to obtain the best subset of features. Combination ftrajectory, orthocenter, writing direction, curvatureg provided the best feature set, achieving recognition accuracies on datasets D1 and D2 of 98.81% and 83.58%, respectively.

Automatic Recognition of Pitch Accents Using Time-Delay Recurrent Neural Network (시간지연 회귀 신경회로망을 이용한 피치 악센트 인식)

  • Kim, Sung-Suk;Kim, Chul;Lee, Wan-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.112-119
    • /
    • 2004
  • This paper presents a method for the automatic recognition of pitch accents with no prior knowledge about the phonetic content of the signal (no knowledge of word or phoneme boundaries or of phoneme labels). The recognition algorithm used in this paper is a time-delay recurrent neural network (TDRNN). A TDRNN is a neural network classier with two different representations of dynamic context: delayed input nodes allow the representation of an explicit trajectory F0(t), while recurrent nodes provide long-term context information that can be used to normalize the input F0 trajectory. Performance of the TDRNN is compared to the performance of a MLP (multi-layer perceptron) and an HMM (Hidden Markov Model) on the same task. The TDRNN shows the correct recognition of $91.9{\%}\;of\;pitch\;events\;and\;91.0{\%}$ of pitch non-events, for an average accuracy of $91.5{\%}$ over both pitch events and non-events. The MLP with contextual input exhibits $85.8{\%},\;85.5{\%},\;and\;85.6{\%}$ recognition accuracy respectively, while the HMM shows the correct recognition of $36.8{\%}\;of\;pitch\;events\;and\;87.3{\%}$ of pitch non-events, for an average accuracy of $62.2{\%}$ over both pitch events and non-events. These results suggest that the TDRNN architecture is useful for the automatic recognition of pitch accents.

Test bed for autonomous controlled space robot (우주로봇 자율제어 테스트 베드)

  • 최종현;백윤수;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1828-1831
    • /
    • 1997
  • this paper, to represent the robot motion approximately in space, delas with algorithm for position recognition of space robot, target and obstacle with vision system in 2-D. And also there are algorithms for precise distance-measuring and calibration usign laser displacement system, and for trajectory selection for optimizing moving to object, and for robot locomtion with air-thrust valve. And the software synthesizing of these algorithms hleps operator to realize the situation certainly and perform the job without any difficulty.

  • PDF