Kim, Do-Yeong;Park, Yong-Kyu;Kwon, Oh-Wook;Un, Chong-Kwan;Park, Seong-Hyun
The Journal of the Acoustical Society of Korea
/
v.13
no.1
/
pp.24-31
/
1994
In this paper, we report on the development of a speaker independent continuous speech recognition system using continuous hidden Markov models. The continuous hidden Markov model consists of mean and covariance matrices and directly models speech signal parameters, therefore does not have quantization error. Filter bank coefficients with their 1st and 2nd-order derivatives are used as feature vectors to represent the dynamic features of speech signal. We use the segmental K-means algorithm as a training algorithm and triphone as a recognition unit to alleviate performance degradation due to coarticulation problems critical in continuous speech recognition. Also, we use the one-pass search algorithm that Is advantageous in speeding-up the recognition time. Experimental results show that the system attains the recognition accuracy of $83\%$ without grammar and $94\%$ with finite state networks in speaker-indepdent speech recognition.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38B
no.4
/
pp.305-313
/
2013
As an FMT (Filtered Multi-Tone) transmission method of Wideband VHF communication system specified by the ETS (European Telecommunications Standards) EN 300 392-2, this paper introduces three existing realization methods, i.e., the direct filtering method using different band SRRC (Square-Root Raised Cosine) filters for each subcarrier, the PPN-DFT method using the IDFT-PPN (Poly-Phase Network) and PPN-DFT at the transmitter and receiver, respectively, and the Extended DFT method. Then, it proposes the extended IDFT-SDFT (Sliding Discrete Fourier Transform) that computes the DFT values only for interested subcarriers every sample time, and shows that it has an advantage of blind symbol timing (using no training symbol) individually for each user signal (independently of other users' signals) in the multi-user environment where the subcarriers are assigned in contiguous or interleaved blocks to each user and each user signal possibly experiences different channels.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.2
/
pp.1-6
/
2001
Eigenface method in face recognition is useful due to its insensitivity to large variations in facial expression and facial details. However its low recognition rate necessitates additional researches. In this paper, we present an efficient method for improving the recognition rate in face recognition using eigenface feature. For this, we performs a comparative study of three different classifiers which are i) a single prototype (SP) classifier, ii) a nearest neighbor (NN) classifier, and iii) a standard feedforward neural network (FNN) classifier. By evaluating and analyzing the performance of these three classifiers, we shows that the distribution of eigenface features of face image is not compact and that selections of classifier and sample training data are important for obtaining higher recognition rate. Our experiments with the ORL face database show that 1-NN classifier outperforms the SP and FNN classifiers. We have achieved a recognition rate of 91.0% by selecting sample trainging data properly and using 1-NN classifier.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.1A
/
pp.156-166
/
2000
In discrete multi-tone (DMT)-based very high bit-rate digital subscriber line (VDSL) systems, the ingressed RFI (Radio Frequency Interference) accompanied by transmitted signal at the receiver is known to cause the spectralleakage by the finite-point FFT, resulting in significant performance degradation.0 this paper, we propose a RFIcancellation technique which can compensate the ingressed RFI efficiently, especially for a high data-rate VDSLsystem. The proposed technique compensates the performance degradation of e VDSL system due to RFI byusing a time-domain RFI canceller whose coefficients are obtained from the estimated center frequency of RFI inthe frequency domain under the assumption that the ingressed RFI is a narrow-band signal compared to VDSLsampling frequency. The proposed technique requires no training symbol and convergence period, and worksproperly even when spectral shape of the ingressed RFI is unknown or arbitrary. Feasibility of the proposedtechnique is demonstrated via a computer simulation by comparing its performance with the performance of theprevious RFI cancellation technique.
In this paper, we propose a system to extract effective speaker representations from a speech signal using a deep learning method. Based on the fact that speech signal contains identity unrelated information such as text content, emotion, background noise, and so on, we perform a training such that the extracted features only represent speaker-related information but do not represent speaker-unrelated information. Specifically, we propose an auto-encoder based disentanglement method that outputs both speaker-related and speaker-unrelated embeddings using effective loss functions. To further improve the reconstruction performance in the decoding process, we also introduce a discriminator popularly used in Generative Adversarial Network (GAN) structure. Since improving the decoding capability is helpful for preserving speaker information and disentanglement, it results in the improvement of speaker verification performance. Experimental results demonstrate the effectiveness of our proposed method by improving Equal Error Rate (EER) on benchmark dataset, Voxceleb1.
This study aims to investigate and practically examine the effect of environmental qualifications based on the theoretical background on the area. First, the economic effect of the acquisition of the qualifications was to be studied from the viewpoints of individuals and from an actual analysis on it, its effect was to be proved. Second, its non-economic effect was to be proved from the same way as the first analysis. On the basis of theoretical background, a study model was formulated in a way that the effect of qualifications in individuals side was divided into an economic effect (wage, employment, promotion, job-switching) and non-economic effect (self-development, self-efficiency, satisfaction on the job, ability to cope with the advancement of technology, job performance, signal effect, the settlement of uneasiness at unemployment). Then, survey was carried out with questions designed in accordance with this model. The hypotheses were proved as the following. First, for hypothesis 1(Environmental qualifications will bring up positive impacts on an individuals economic effect), environmental qualifications was shown to have positive impacts on wage, job-switching in personal economic effect. But, no personal economic effect appeared for employment and promotion. Second, for hypothesis 2(Environmental qualifications will bring up positive impacts on an individuals non-economic effect), environmental qualifications appeared to have positive impacts on self-efficiency, ability to cope with the advancement of technology, job performance and signal effect. Besides, no impact was shown in satisfaction on the job and the settlement of uneasiness at unemployment and self-development.
Journal of the Institute of Convergence Signal Processing
/
v.5
no.4
/
pp.333-337
/
2004
This paper describe a design of 5GHz OFDM baseband chip for IEEE 802.11a wireless LAN. The proposed device is consists of transmitter and receiver within a single FPGA chip. We applied single tap equalizer that use Normalized LMS algorithm to remove ISI that happen at high speed data transmission. And also, we used carrier wave frequency offset algorithm that use training symbol to remove ICI. The simulation results show the correct transmission without errors the between transmitter and receiver And we can remarkably reduce the number of register through the synthesized circuits by using DSP block and EMB(Embedded Memory Block). The target device for implementation of the synthesized circuits is Altera Stratix EPIS25FC672 FPGA and design platform is VHDL.
Kim, Hyeon-Su;Seo, Jong-Pil;Kim, Jae-Young;Kim, Seong-Il;Chung, Jae-Hak
The Journal of the Acoustical Society of Korea
/
v.31
no.1
/
pp.1-10
/
2012
The linear and decision-feedback equalization can mitigate time-varying intersymbol interference (ISI) caused by time-varying multipath propagation for underwater acoustic channels. The perfect elimination of interference components, however, is difficult using the linear equalization and the decision feedback equalizer has an error propagation problem. To overcome these shortcomings, this paper proposes an equalizer mode selection method using training sequences. The proposed method selects an equalization mode corresponding to the signal-to-noise ratio (SNR). If the SNR is low, the proposed system operates the linear equalizer for preventing the error propagation and if the SNR is high, the decision feedback equalizer for eliminating the residual ISI. Therefore, the proposed method can improve the error performance compared to the conventional equalizers. The computer simulation shows the proposed method improves the bit error performance using practical underwater channels responses acquired from the sea experiment.
In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).
The Transactions of the Korean Institute of Electrical Engineers D
/
v.55
no.11
/
pp.502-510
/
2006
In this paper, we describe implementation of a computer access device for the severly motor-disability. Many people with severe motor disabilities need an augmentative communication technology. Those who are totally paralyzed, or 'locked-in' cannot use conventional augmentative technologies, all of which require some measure of muscle control. The forehead is often the last site to suffer degradation in cases of severe disability and degenerative disease. For example, In ALS(Amyotrophic Lateral Sclerosis) and MD(Muscular dystrophy) the ocular motorneurons and ocular muscles are usually spared permitting at least gross eye movements, but not precise eye pointing. We use brain and body forehead bio-potentials in a novel way to generate multiple signals for computer control inputs. A bio-amplifier within this device separates the forehead signal into three frequency channels. The lowest channel is responsive to bio-potentials resulting from an eye motion, and second channel is the band pass derived between 0.5 and 45Hz, falling within the accepted Electroencephalographic(EEG) range. A digital processing station subdivides this region into eleven components frequency bands using FFT algorithm. The third channel is defined as an Electromyographic(EMG) signal. It responds to contractions of facial muscles and is well suited to discrete on/off switch closures, keyboard commands. These signals are transmitted to a PC that analyzes in a time series and a frequency region and discriminates user's intentions. That software graphically displays user's bio-potential signals in the real time, therefore user can see their own bio-potentials and control their physiological signals little by little after some training sessions. As a result, we confirmed the performance and availability of the developed system with experimental user's bio-potentials.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.