• Title/Summary/Keyword: training models

Search Result 1,593, Processing Time 0.033 seconds

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

호스피스 전달체계 모형

  • Choe, Hwa-Suk
    • Korean Journal of Hospice Care
    • /
    • v.1 no.1
    • /
    • pp.46-69
    • /
    • 2001
  • Hospice Care is the best way to care for terminally ill patients and their family members. However most of them can not receive the appropriate hospice service because the Korean health delivery system is mainly be focussed on acutly ill patients. This study was carried out to clarify the situation of hospice in Korea and to develop a hospice care delivery system model which is appropriate in the Korean context. The theoretical framework of this study that hospice care delivery system is composed of hospice resources with personnel, facilities, etc., government and non-government hospice organization, hospice finances, hospice management and hospice delivery, was taken from the Health Delivery System of WHO(1984). Data was obtained through data analysis of litreature, interview, questionairs, visiting and Delphi Technique, from October 1998 to April 1999 involving 56 hospices, 1 hospice research center, 3 non-government hospice organizations, 20 experts who have had hospice experience for more than 3 years(mean is 9 years and 5 months) and officials or members of 3 non-government hospice organizations. There are 61 hospices in Korea. Even though hospice personnel have tried to study and to provide qualified hospice serices, there is nor any formal hospice linkage or network in Korea. This is the result of this survey made to clarify the situation of Korean hospice. Results of the study by Delphi Technique were as follows: 1.Hospice Resources: Key hospice personnel were found to be hospice coordinator, doctor, nurse, clergy, social worker, volunteers. Necessary qualifications for all personnel was that they conditions were resulted as have good health, receive hospice education and have communication skills. Education for hospice personnel is divided into (i)basic training and (ii)special education, e.g. palliative medicine course for hospice specialist or palliative care course in master degree for hospice nurse specialist. Hospice facilities could be developed by adding a living room, a space for family members, a prayer room, a church, an interview room, a kitchen, a dining room, a bath facility, a hall for music, art or work therapy, volunteers' room, garden, etc. to hospital facilities. 2.Hospice Organization: Whilst there are three non-government hospice organizations active at present, in the near future an hospice officer in the Health&Welfare Ministry plus a government Hospice body are necessary. However a non-government council to further integrate hospice development is also strongly recommended. 3.Hospice Finances: A New insurance standards, I.e. the charge for hospice care services, public information and tax reduction for donations were found suggested as methods to rise the hospice budget. 4.Hospice Management: Two divisions of hospice management/care were considered to be necessary in future. The role of the hospice officer in the Health & Welfare Ministry would be quality control of hospice teams and facilities involved/associated with hospice insurance standards. New non-government integrating councils role supporting the development of hospice care, not insurance covered. 5.Hospice delivery: Linkage&networking between hospice facilities and first, second, third level medical institutions are needed in order to provide varied and continous hospice care. Hospice Acts need to be established within the limits of medical law with regards to standards for professional staff members, educational programs, etc. The results of this study could be utilizes towards the development to two hospice care delivery system models, A and B. Model A is based on the hospital, especially the hospice unit, because in this setting is more easily available the new medical insurance for hospice care. Therefore a hospice team is organized in the hospital and may operate in the hospice unit and in the home hospice care service. After Model A is set up and operating, Model B will be the next stage, in which medical insurance cover will be extended to home hospice care service. This model(B) is also based on the hospital, but the focus of the hospital hospice unit will be moved to home hospice care which is connected by local physicians, national public health centers, community parties as like churches or volunteer groups. Model B will contribute to the care of terminally ill patients and their family members and also assist hospital administrators in cost-effectiveness.

  • PDF

The Characteristics of Pain Coping Strategies in Patients with Chronic Pain by Using Korean Version-Coping Strategies Questionnaire(K-CSQ) (한국판 대처 전략 질문지 (K-CSQ)를 이용한 만성 통증 환자의 통증대처 특성)

  • Song, Ji-Young;Kim, Tae;Yoon, Hyun-Sang;Kim, Chung-Song;Yeom, Tae-Ho
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.10 no.2
    • /
    • pp.110-119
    • /
    • 2002
  • Objectives : Numbers of patients who have chronic pain seem to be increasing in the psychiatric practice. Many investigators have used models of stress and coping to help explain the differences in adjustment found among persons who experience chronic pain. Coping strategies appear to be associated with adjustment in chronic pain patients. The objectives of this study were to develop a self-report questionnaire which is the most widely used measures of pain coping strategies, Coping Strategies Questionnaire (CSQ) into Korean version and to study the different coping strategies with which chronic pain patients frequently use when their pain reaches a moderate or greater level of intensity. Methods : One hundred twenty-eight individuals with chronic pain conditions and two hundred fifty-two normal controls were administered the Korean version-Coping Strategies Questionnaire(KCSQ) to assess the frequency of use and perceived effectiveness of a variety of cognitive and behavioral pain coping strategies. We also obtained their clinical features in chronic pain patients. Reliability of the questionnaire were analyzed and evaluated differences of coping strategies between two groups. Results : Data analysis revealed that the questionnaire was internally reliable. Chronic pain patients reported frequent use of a variety of pain coping strategies, such as coping self-statements, praying and hoping, catastrophizing, and increase behavior scales which were higher compared to the normal controls. Conclusion: K-CSQ revealed to be a reliable self-report questionnaire which is useful for the assessment of coping strategies in clinical setting on chronic pain. And analysis of pain coping strategies may be helpful in understanding pain for chronic pain patients. The individual K-CSQ may have greater utility in terms of examining coping, appraisals, and pain adjustment. A consideration of pain coping strategies may allow one to design pain coping skills training interventions so as to fit the individual chronic pain patient. Further research is needed to determine whether cognitive-behavioral intervention designed to decrease maladaptive coping strategies can reduce pain and improve the physical and psycho-social functioning of chronic patients.

  • PDF

Database Security System supporting Access Control for Various Sizes of Data Groups (다양한 크기의 데이터 그룹에 대한 접근 제어를 지원하는 데이터베이스 보안 시스템)

  • Jeong, Min-A;Kim, Jung-Ja;Won, Yong-Gwan;Bae, Suk-Chan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1149-1154
    • /
    • 2003
  • Due to various requirements for the user access control to large databases in the hospitals and the banks, database security has been emphasized. There are many security models for database systems using wide variety of policy-based access control methods. However, they are not functionally enough to meet the requirements for the complicated and various types of access control. In this paper, we propose a database security system that can individually control user access to data groups of various sites and is suitable for the situation where the user's access privilege to arbitrary data is changed frequently. Data group(s) in different sixes d is defined by the table name(s), attribute(s) and/or record key(s), and the access privilege is defined by security levels, roles and polices. The proposed system operates in two phases. The first phase is composed of a modified MAC (Mandatory Access Control) model and RBAC (Role-Based Access Control) model. A user can access any data that has lower or equal security levels, and that is accessible by the roles to which the user is assigned. All types of access mode are controlled in this phase. In the second phase, a modified DAC(Discretionary Access Control) model is applied to re-control the 'read' mode by filtering out the non-accessible data from the result obtained at the first phase. For this purpose, we also defined the user group s that can be characterized by security levels, roles or any partition of users. The policies represented in the form of Block(s, d, r) were also defined and used to control access to any data or data group(s) that is not permitted in 'read ' mode. With this proposed security system, more complicated 'read' access to various data sizes for individual users can be flexibly controlled, while other access mode can be controlled as usual. An implementation example for a database system that manages specimen and clinical information is presented.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

An Exploration of the Influencing Factors and Development of Effective Models of Science Teacher Efficiency (과학 교사의 효능감 관련 요인 탐색을 통한 과학 교사 효능감 형성 모형 개발)

  • Choi, Sung-Youn;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.6
    • /
    • pp.693-718
    • /
    • 2010
  • This study investigated secondary school science teachers' experiences to explore the influencing factors in science teachers efficiency (STE). The participants, thirty three secondary school science teachers who have more than four years of teaching experience, were interviewed about describing each teacher's experience throughout one's years of teaching. The grounded theory introduced by Strauss and Corbin (1998) was used to analyze the data in this study. The results of paradigm analysis revealed that STE is influenced by 125 concepts, 38 sub-categories, and 16 categories. In a paradigm model, the central phenomenon was 'constructing STE', and the causal condition was 'want to be a teacher' as career choice motivation. The contextual conditions that have an affect on the central phenomenon were 'self awareness of the teacher' and 'social awareness of the teacher.' The mediate conditions, which facilitated or restrained the action/interaction strategies, were 'societal tendency', 'school climate', and 'personal context.' The action/interaction strategies to control the phenomenon were 'following the line,' 'identifying effective teaching strategies,' 'taking teacher education programs,' and 'contributing to school improvement.' The consequences were 'teacher's self awareness', 'challenge,' and 'stagnating in teaching.' The overall conclusion drawn from this research is that, the definition of STE is beliefs in science teachers' capabilities to set up objects in some school teaching context and, organize and execute the course of action required to attain these. Additionally, STE has three dimensions of teacher's behaviors: science instructional efficiency, efficiency in engaging students, and efficiency in managing school conditions. This study offers insight into the nature of STE and theoretical framework. These findings may give science teachers and teacher educators the practical knowledge necessary to build effective training programs and interventions that would help increase STE and facilitate effective teaching.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.