사회적 경제의 활성화는 정부의 100대 중점 과제중 하나다. 인증 사회적기업은 2019년 8월 현재 2249개로 사회적기업 육성법이 시행된 2007년 이후 41배에 달하는 양적 팽창을 하고 있다. 최근 사회적기업의 인증 제도를 등록제로 전환한다는 이슈가 대두되는 등 사회적 경제(social economy) 조직들의 지속성장 가능성에 대한 많은 논의가 이뤄지고 있다. 본 연구는 사회적 가치와 경제적 가치를 이중적으로 추구하는 사회적기업의 특수한 경영 구조에 착안하여 성과에 영향을 주는 요인들을 도출했다. 그 중에서도 창업가의 사회적 경제에 대한 경험 특성, 전략적 역량, 사회적 가치 추구 정도, 성과간의 관계를 실증적으로 규명코자 하였다. 본 연구가 선행연구들과 다른 점은 사회적 기업의 하이브리드적 경영 구조를 창업가의 관점에서 착안한 점이다. 그에 따라 일반 영리기업에서 통용되는 창업가의 전략적 역량과 사회적 경제 조직에서 중시되는 경험 특성이 창업가의 사회적 가치 추구의 정도와 어떠한 매개효과를 가지며 성과에 어떻게 영향을 미치는가에 대해서 실증적 규명을 시도한 것이다. 연구결과는 우선 사회적기업 창업가는 사회적 가치를 최우선적 목표로 추구하면서 그것을 지속적으로 유지하기 위해서는 전략적 역량을 통해 경제적 성과를 향상시켜야 한다는 점과, 다음으로 사회적 가치 추구는 창업가의 사회적 경제에 대한 이해와 관련 경험 등을 밑바탕으로 형성되어야 함을 시사한다. 또한 연구 결과에서 도출한 실무적 시사점은 향후 관련기관의 사회적 기업에 대한 교육이나 기존 경영자 및 창업후보자의 역량 모델 설정에 실질적인 방향을 제시하고 있다.
에듀테인먼트 시스템은 학습자가 문제를 효과적으로 인식하고, 문제를 해결하는 데 필요한 중요한 정보를 파악 분류하고, 배운 내용을 전달할 수 있도록 돕는 것을 목표로 한다. 에듀테인먼트를 활용한 콘텐츠는 과학 및 산업 분야의 교육 및 훈련에 유용하게 적용될 수 있다. 본 논문에서는 직관적인 멀티 모달 인터페이스를 활용하여 신약개발에서 활용되고 있는 가상스크리닝에 적용될 수 있는 에듀테인먼트 시스템을 제안한다. 본 연구에서는 분자 구조의 3D 모델을 효과적으로 조작하기 위해 입체 모니터를 활용하여 3차원(3D)거대 분자 모델링을 시각화 하였으며, 멀티 모달 인터페이스를 활용하여 분자 모델을 조작하고 있다. 본 시스템은 신약 개발 혹은 백신 개발에 있어 매우 중요한 방법 중의 하나인 가상 약물 선별 방법 중 하나 인 도킹 시뮬레이션 실험을 게임적 요소를 활용하여 쉽게 해결하는 방법을 제안하고 있다. 레벨 업 개념은 게임 요소가 객체와 사용자의 수에 의해 의존되는 바이오 게임 접근법을 활용하여 구현하였다. 실험 방법으로는 제안된 시스템의 신약 개발 과정에서 인간 면역 결핍 바이러스 (HIV)의 새로운 후보물질을 활용하여 바이러스의 활동 억제를 스크리닝하는 도킹 과정에서의 시간 측정으로 성능 비교 평가하였다.
본 논문에서는 흉부 X선 영상에서 정상 심장과 비정상 심장(심장비대)을 분류할 수 있는 합성곱 신경망 모델을 제안하고자 한다. 학습 및 테스트 데이터로는 경북대학교병원에 내원하여 정상과 심장비대를 진단받은 환자들의 흉부 X-선 이미지를 획득하여 사용하였다. 제안된 합성곱 신경망 모델을 이용하였을 때의 정상 심장 및 비정상 심장(심장비대) 분류 정확도는 99.88%였다. 정상 심장 영상을 테스트 데이터로 사용하였을 때의 정확도, 정밀도, 재현율 및 F1 Score는 95%, 100%, 90%, 96%였다. 비정상 심장(심장비대) 영상을 테스트 데이터로 사용하였을 때의 정확도, 정밀도, 재현율 및 F1 Score는 95%, 92%, 100% 및 96%였다. 이러한 학습 및 테스트 분류 결과로 제안된 합성곱 신경망 모델은 흉부 X-선 영상의 특징 추출 및 분류에서 매우 우수한 성능을 보여주고 있다고 판단된다. 본 논문에서 제안하는 합성곱 신경망 모델은 흉부 X-선 영상의 질환 분류에 있어 유용한 결과를 보여줄 것으로 판단되며, 다른 의료 영상에서도 동일한 결과를 나타내는지 알아보기 위하여 추가적인 연구가 이루어져야 할 것이다.
본 연구에서는 6개의 기계학습 기법들을 활용하여 2019년과 2020년 전국 땅밀림 현장조사 결과를 기반으로 땅밀림 위험지역을 A부터 C까지 3개 등급(A등급: 위험, B등급: 보통, C등급: 양호)으로 구분할 수 있는 분류모형을 구축하고, 분류 정확도를 비교·분석한다. 기계학습 기법으로는 K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, Extreme Gradient Boosting 총 6개를 적용하였다. 분류 정확도 분석결과, 6개의 기법 모두 0.9 이상의 우수한 정확도를 보여주었다. 수치형 자료를 학습에 적용한 경우가, 문자형 자료를 학습한 모형보다 우수한 성능을 나타냈으며, 현장조사 평가점수 자료군(C1~C4) 보다는 전문가의견이 반영된 평가점수 자료군(R1~R4)으로 학습한 모형이 정확도가 높은 것으로 분석되었다. 특히, 직접징후와 간접징후 정보를 학습에 반영한 경우가 예측정확도가 높게 나타났다. 향후 땅밀림 현장조사 자료가 지속적으로 확보될 경우, 본 연구에서 활용한 기계학습기법은 땅밀림 분류를 위한 도구로 활용이 가능할 것으로 판단된다.
초기 학습 데이터의 과적합으로 인한 전력망 상태예측 모델의 성능 감소를 방지하고 예측모델의 예측 정확도 유지를 통한 계속적인 현장활용을 위해서는 기계학습 모델의 예측 정확도를 지속적으로 관리할 필요가 있다. 이를 위해, 본 논문에서는 다양한 요인에 의해 끊임없이 변화하는 전력망 상태 데이터의 특성을 고려하여 예측모델의 정확성과 신뢰성을 높이고 현장 적용 가능한 수준의 품질을 유지하기 위한 기계학습 기반 전력망 상태예측 모델의 성능 유지관리 자동화 기법을 제안한다. 제안 기법은 워크플로우 관리 기술의 적용을 통해 전력망 상태예측 모델 성능 유지관리를 위한 일련의 태스크들을 워크플로우의 형태로 모델링하고 이를 자동화하여 업무를 효율화 하였다. 또한, 기존 기술에서는 시도되지 않았던 학습데이터의 통계적 특성 변화 정도와 예측의 일반화 수준을 모두 고려한 예측모델의 성능 평가를 통해 성능 결과의 신뢰성을 확보하고 이를 통해 예측 모델의 정확도를 일정 수준으로 유지관리하고 더욱 성능이 우수한 예측모델의 신규 개발이 가능하다. 결과적으로 본 논문에서 제안하는 전력망 상태예측 모델 성능 유지관리 자동화 기법을 통해 예측모델의 성능 저하문제를 해결하여 분산자원 연계 등 외부 환경의 변화에 유연한 예측모델 관리를 통해 정확성과 신뢰성이 보장된 예측 모델의 지속적인 활용이 가능하다.
새롭게 발생되는 사이버 공격으로 인해 개인, 민간 및 기업의 피해가 증가함에 따라, 이에 기반이 되는 네트워크 보안 문제는 컴퓨터 시스템의 주요 문제로 부각되었다. 이에 기존에 사용되는 네트워크 침입 탐지 시스템(Network Intrusion Detection System: NIDS)에서 발생되는 한계점을 개선하고자 기계 학습과 딥러닝을 활용한 연구 이뤄지고 있다. 이에 본 연구에서는 CNN(Convolution Neural Network) 알고리즘을 이용한 NIDS 모델 연구를 진행한다. 이미지 분류 기반의 CNN 알고리즘 학습을 위해 기존 사용되는 전처리 단계에서 연속성 변수 이산화(Discretization of Continuous) 알고리즘을 추가하여 예측 변수에 대해 선형 관계로 표현하여 해석에 용이한 데이터로 변환 후, 정사각형 행렬(Square Matrix) 구조에 매칭된 픽셀(Pixel) 이미지 구조를 모델에 학습한다. 모델의 성능 평가를 위해 네트워크 패킷 데이터인 NSL-KDD를 사용하였으며, 정확도(Accuracy), 정밀도(Precision), 재현율(Recall) 및 조화평균(F1-score)을 성능지표로 사용하였다. 실험 결과 제안된 모델에서 85%의 정확도로 가장 높은 성능을 보였으며, 학습 표본이 적은 R2L 클래스의 조화평균이 71% 성능으로 다른 모델에 비해서 매우 좋은 성능을 보였다.
미세먼지는 인체에는 물론 생태계, 날씨 등에도 많은 영향을 끼치며, 인구와 건물, 차량 등이 밀집된 대도시에서의 미세먼지의 예측과 모니터링은 중요하다. 특히 자동차, 연소 등에서 발생하는 PM2.5 농도는 독성 물질을 포함할 수 있어 체계적인 관리가 필요하다. 따라서 본 연구는 화학 인자, 위성 기반의 aerosol optical depth (AOD), 기상 인자 등을 입력 자료로 하여 수도권PM2.5 농도를 예측하고자 한다. PM2.5 농도 예측을 위해 기계 학습 모델 중 PM 농도 예측에 우수한 성능을 보이는 random forest (RF) 모델을 선정하였으며, 모델 평가를 위해 통계 지표인 R2, RMSE, MAE, MAPE를 산출하였다. RF 모델의 모델 정확도는 R2, RMSE, MAE, MAPE는 각각 0.97, 3.09, 2.18, 13.31로 나타났으며, 예측 정확도는 각각 0.82, 6.03, 4.36, 25.79로 본 연구에서 사용한 인자들을 이용하여 PM2.5를 예측 시 높은 정확도와 상관성을 나타내었다. 따라서 향후 학교 미세먼지 예측 및 범주화를 위해 본 연구에서 사용한 인자들을 RF 모델에 적용하였을 때 신뢰할만한 결과를 도출할 수 있을 것으로 기대된다.
영어로 된 아마존과 같은 대형 글로벌 온라인 쇼핑몰은 전 세계를 대상으로 영어 또는 판매 해당국가 언어로 서비스를 하고 있다. 온라인 쇼핑몰 이용자 중, 많은 고객은 상품 리뷰평가를 참조하여 상품을 구매하고 있다. 그래서 고객들이 작성한 대량의 리뷰데이터를 이용하여 구매 상품에 대해 긍정과 부정을 판정하는 감성분석을 영어를 중심으로 활발히 연구되고 분석 결과는 고객의 타켓 마케팅에 활용되고 있다. 하지만 이와 같은 영어 중심의 감성분석 시스템을 전 세계의 다양한 언어에 그대로 적용하기는 어렵다. 따라서 본 연구에서는 영어로 된 50만개 이상의 아마존 푸드 상품 리뷰데이터를 학습과 테스트 데이터로 분리하여 딥러닝 기술 기반의 감성분석 시스템을 구현하였다. 먼저 영어 테스트데이터의 3가지 모델에 대한 감성분석 평가 실험을 한 후에, 같은 데이터를 자동번역기로 7개국(한국어, 일본어, 중국어, 베트남어, 불어, 독어, 영어) 언어로 번역 후에 다시 영어로 번역하여 실험 결과를 얻었다. 감성분석 정확성은 영어(94.35%)에 비해 각 7개국 언어의 평균(91.59%)보다 정확도가 2.77% 정도 낮게 나왔으나 번역 성능 수준에서 실용 가능성을 확인하였다.
감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.
화학·생물(화생) 위험을 초기 단계에 효과적으로 대응하기 위해서는 화생 대응 계획을 체계적으로 발전시켜야 하며, 모델링 및 시뮬레이션은 이를 위한 과학적 수단으로 활용될 수 있다. 그러나 오염 확산 모델링 분야는 많은 발전을 이루고 있으나, 화생 대응 계획을 모의하고 적절성을 분석하는 시뮬레이션 분야는 여전히 초기 단계에 머무르고 있다. 이에 본 논문에서는 화생 오염 탐지, 보호, 제독 등 대응 계획을 과학적으로 모의하기 위한 모델을 제안한다. 먼저 기상 및 지형 조건을 고려하여 예측된 오염 확산 결과를 교전 모델에 반영하는 방법을 제시한다. 이어서 공개된 사상자 예측 기법을 기반으로 전투 모의 개체의 화생 피해를 모의하는 화생 전투 피해 모의 기법을 설계한다. 그리고 화생 위험 탐지·정찰, 제독, 보호 등 화생 위험 대응 계획을 체계적으로 모의하는 과업을 모델링한다. 끝으로 화생 감시소 운용에 의한 오염 탐지의 신속성을 분석하는 한편, 화생 제독소 운용 시 오염 부대 규모와 제독 부대 규모에 따른 제독 소요 시간을 분석함으로써 화생 전투 모의 실험의 가능성을 확인한다. 제안된 모델을 이용하면 향후 군의 화생 방호 체계 및 운용개념에 대한 효과 분석은 물론 재난 방재 및 모의 훈련 분야에서도 일부 활용이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.