• 제목/요약/키워드: train dynamic performance

검색결과 176건 처리시간 0.03초

고속전철용 집전시스템의 동적해석 (Dynamic Analysis of Current Collection System in High Speed Train)

  • 최연선;최진민;경진호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.142-147
    • /
    • 1995
  • Dynamic characteristics of current collection system is one of the major factors which decide the performance of high speed train. To find good design parameters of the current collection system design guide is prepared through the engineering analysis in this study. The analysis starts from the statics of catenary system which results in the sinusoidal variation of stiffness, which is inherently nonlinear Mathieu equation. Simple physical models of rigid trolley wire and Mathieu equation are considered. To simulate the dynamic response of current collection system, numerical integration based on central difference method and modal analysis are presented. The calculated results of central difference method show superior to those of Euler based algorithm.

  • PDF

신형식 PSC 철도교량의 동적성능 평가 (Dynamic Performance Evaluation of New Type PSC Railroad Bridges)

  • 최상현
    • 한국재난정보학회 논문집
    • /
    • 제7권4호
    • /
    • pp.259-265
    • /
    • 2011
  • 2005년 KTX 개통이후 고속철도는 친환경적, 고효율 교통 수단으로 급부상하고 있으며, 최근 정부에서도 KTX를 중심으로 미래 교통망을 구축할 것을 계획하고 있다. 이러한 분위기에 부흥하여 건설 또는 설계중인 구조물들도 증속에 대비하고 있으며, 기존선의 경우도 개량을 계획하고 있다. 이 연구에서는 최근 개발된 중경간 PSC 거더 교량의 동적안전성 검토를 통하여 고속철도 운행에 따른 적합성을 평가하였다. 연구에 적용된 교량은 IT, Precom, WPC 거더교이며, 동등 비교를 위하여 동일한 모델링 및 해석 기법을 적용하였다. 동적성능 평가에 적용된 지표는 고유진동수, 연직 및 단부 처짐, 단부 축방향 변형, 궤도틀림 등이며, 적용된 하중은 KTX 이동하중이다. 동적해석은 최고속도 420km/hr까지 10km/hr 간격으로 증속하여 수행하였다.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

캡슐트레인 주행 동특성 분석을 위한 축소 시험장치의 개발 (Development of the Small Scale Testbed for Running Dynamic Characteristics Analysis of the Capsule Train)

  • 이진호;유원희;이관섭
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.643-651
    • /
    • 2020
  • 공기 저항이 적은 아진공 상태의 튜브 안을 주행함으로써 초고속주행이 가능한 캡슐트레인은 부상 공극이 커서 인프라 건설 비용 절감에 유리한 초전도 유도 반발식 부상을 채택하고 있다. 초전도 유도 반발식 부상은 부상 공극을 크게 할 수 있고, 별도의 공극 제어가 필요 없는 장점이 있는 반면, 공극 변동량이 크고 부상력에 댐핑 특성이 작기 때문에 차량의 주행 안정성 및 승차감이 악화 될 수 있다. 이러한 단점을 극복하기 위해서는 차량의 주행 동특성에 기반한 주행안정화장치를 설계하고 적용하여야 한다. 본 연구에서는 캡슐트레인의 동특성을 모사하고 주행안정화장치의 성능을 사전에 검토할 수 있는 1/10 스케일의 축소형 시험장치를 개발하였다. 시험장치는 대차의 모션을 구현할 수 있는 6 자유도 스튜어트 플랫폼, 주행안정화장치가 적용된 2차 현가장치 및 차체로 구성되어 있다. Jaschinski가 제안한 동특성 상사 법칙에 따라 축소 시험장치를 제작하였고, 가이드웨이 불규칙도와 부상 강성이 반영된 대차 모션 구현 알고리즘을 적용하였다. 제작된 시험장치를 이용한 실험을 통해 얻어진 결과와 수치해석 결과와의 비교를 통해 시험장치의 성능을 검토하였다.

Design and Control of Levitation and Guidance Systems for a Semi-High-Speed Maglev Train

  • Kim, Min;Jeong, Jae-Hoon;Lim, Jaewon;Kim, Chang-Hyun;Won, Mooncheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.117-125
    • /
    • 2017
  • Research on Maglev (Magnetic Levitation) train is currently being conducted in Korea, concerning Urban Transit (110 km/h of maximum speed), semi-high-speed (200 km/h of maximum speed), and high-speed (550 km/h of maximum speed) trains. This paper presents a research study on the levitation and guidance systems for the Korean semi-high-speed maglev train. A levitation electromagnet was designed, and the need for a separate guidance system was analyzed. A guidance electromagnet to control the lateral displacement of the train and ensure its stable operation was then also designed, and its characteristics were analyzed. The dynamic performance of the designed levitation and guidance electromagnets was modeled and analyzed, using a linearized modeling of the system equations of motion. Lastly, a test setup was prepared, including manufactured prototypes of the designed system, and the validity of the design was verified and examined with performance evaluation tests.

터널구간 팬터그래프와 전차선간 동적성능 검측장치 구현 (Implement of Dynamic Performance Measurement System Between Pantograph and Contact wire in Tunnel)

  • 박영;박철민;이기원;권삼영
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1732-1736
    • /
    • 2012
  • To increase speed up of train, in the field of catenary system, it is necessary to develop of new monitoring methods for dynamic interaction between pantograph and contact wire. Also, there is a need to develop technologies that constantly measure are from various railway structure such as uplift of contact wire, vibration of catenary, dynamic strain of contact line in tunnel. In this paper condition monitoring systems for dynamic performance of catenary systems in tunnel were proposed. An advanced method and results of field tests using high speed camera for monitoring of vertical upward movement of the grooved contact wire due to the force produced from the pantograph were presented. The proposed uplift measurement system of contact wire is expected to enhance precision of current collection quality performance assessment methods at high-speed lines.

모드중첩법을 기초로 한 집전성능해석 프로그램 개발 (Development of a Dynamic Simulation Program for Pantograph-Catenary System based on a Mode Superposition Method)

  • 조용현;이기원;현승호;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.606-617
    • /
    • 2000
  • A dynamic simulation program for pantograph-catenary system is developed based on a mode superposition method to predict current collection performance. Formulations for the dynamic simulation are presented in this paper. The number of modes which should be considered for a KTX catenary system is reviewed through frequency response analyses. The responses for GPU pantograph - KTX catenary system are simulated with various train speeds. The our simulation results are in reasonably good agreements with RTRI simulation program, SNCF simulation program, and BR simulation program.

  • PDF

Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

  • Guo, Weiwei;Xia, He;Karoumi, Raid;Zhang, Tian;Li, Xiaozhen
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.213-236
    • /
    • 2015
  • For high-speed railways (HSR) in wind prone regions, wind barriers are often installed on bridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the running safety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PC bridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to perform the dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by a multi-rigid-body system connected with suspension springs and dashpots. The wind excitations on the train vehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained from a wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlation with wind forces on the deck. The whole histories of a train passing over the two bridges under strong cross winds are simulated and compared, considering variations of wind velocities, train speeds and without or with wind barriers. The threshold curves of wind velocity for train running safety on the two bridges are compared, from which the windbreak effect of the wind barrier are evaluated, based on which a beam structure with better performance is recommended.