• Title/Summary/Keyword: traffic signal controller

Search Result 75, Processing Time 0.03 seconds

Traffic Fuzzy Control : Software and Hardware Implementations

  • Jamshidi, M.;Kelsey, R.;Bisset, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.907-910
    • /
    • 1993
  • This paper describes the use of fuzzy control and decision making to simulate the control of traffic flow at an intersection. To show the value of fuzzy logic as an alternative method for control of traffic environments. A traffic environment includes the lanes to and from an intersection, the intersection, vehicle traffic, and signal lights in the intersection. To test the fuzzy logic controller, a computer simulation was constructed to model a traffic environment. A typical cross intersection was chosen for the traffic environment, and the performance of the fuzzy logic controller was compared with the performance of two different types of conventional control. In the hardware verifications, fuzzy logic was used to control acceleration of a model train on a circular path. For the software experiment, the fuzzy logic controller proved better than conventional control methods, especially in the case of highly uneven traffic flow between different directions. On the hardware si e of the research, the fuzzy acceleration control system showed a marked improvement in smoothness of ride over crisp control.

  • PDF

The Traffic Signal control System Applying Fuzzy Reasoning (퍼지추론을 적용한 교통 신호 제어 시스템)

  • Kim, Mi-Gyeong;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.977-987
    • /
    • 1999
  • The current traffic signal control systems are operated depending on the pre-planned control scheme or the selected control scheme according to a period of time. The problem with these types of traffic control systems is that they can not cope with variant traffic flows appropriately. Such a problem can be difficult to solve by using binary logic. Therefore, in this 0paper, we propose a traffic signal control system which can deal wit various traffic flows quickly and effectively. The proposed controller is operated under uncertainty and in a fuzzy environment. It show the congestion of road traffic by using fuzzy logic, and it determines the length of green signal by means of a fuzzy inference engine. It modeled using petri-net to verify its validation.

  • PDF

An Optimal Traffic Signal system of Cross-roads Applying Fuzzy Control (퍼지 제어를 적용한 교차로에서의 최적 교통 신호 시스템)

  • Lee, Yeong-Sin;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.167-176
    • /
    • 1997
  • Due to continuous change in traffic and increase in traffic volumes at the intersection, efficient traffic control system is required to manage road situations flexibly in accordance with the change occurring every hour. In this paper, we study the control systems which will help us to determine the interva ls of intersection following the autonomous analysis of complexity of the road. Fuzzy logic control concept was applied to the fuzzy logic controller(FLC) for controlling traffic signal. Furthermore the fuzzy signal systems were compare with the regular signal systems to prove higher performance of the FLC presente d in the paper. By means of simulation, the validity of FLC was proven. About 6% increase in the efficiency of traffic control based on the proposed algorithm in this paper was when we use the simulation.

  • PDF

Development of Message Broker-Based Real-Time Control Method for Road Traffic Safety Facilities Equipment and Devices Integrated Management System

  • JeongHo Kho;Eum Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.195-209
    • /
    • 2024
  • The current road traffic signal controller developed in the 1990s has limitations in flexibility and scalability due to power supply problems, various communication methods, and hierarchical black box structures for various equipment and devices installed to improve traffic safety for road users and autonomous cooperative driving. In this paper, we designed a road traffic safety facilities equipment and devices integrated management system that can cope with the rapidly changing future traffic environment by solving the using direct current(DC) and power supply problem through the power over ethernet(PoE) technology and centralized data-driven control through message broker technology. In addition, a data-driven real-time control method for road traffic safety facilities equipment and devices operating based on time series data was implemented and verified.

Design of Traffic Signal Controller Using Fuzzy Transition Timed Petri Net (퍼지 트랜지션 시간 페트리 네트를 이용한 교통신호제어기 설계)

  • 모영승;김정철;김진권;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.264-267
    • /
    • 2000
  • The need for including time variables in various type of modeled Discrete Event Dynamic Systems(DEDSs) is apparent since the modeled systems are real time in nature. In the real world, almost all event is related to time. A Time Petri Net(TPN) is one of methods for model ins and analyzing of DEDSs with real time values. Two time values, ${\alpha}$$\sub$i/ and ${\beta}$$\sub$i/ are defined for each transition. In this paper, Ire present Fuzzy Transition Timed Petri Net(FTTPN) to determine the optimal transition firing time between ${\alpha}$$\sub$i/ and ${\beta}$$\sub$i/ using fuzzy theory. The traffic signal controller in an intersection is modeled and analyzed by FTTPN.

  • PDF

Organic Control of Crossroad Traffic Lights by using PLC (PLC를 활용한 유기적인 교차로 신호등 제어)

  • Sim, Jae-Yong;Keum, Yun-Jong;Hong, Yeon-Sung;Yu, Kuk-Hyun;Lee, Soeung-Ho;Park, Myeong-Jin;Kwon, Oh-Min
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.103-104
    • /
    • 2011
  • In this paper, an organic signal control method for the traffic lights system is suggested. To do this, Programmable Logic Controller(PLC) and position sensor are utilized to manufactured a traffic lights signal control system. An operating example of the manufactured traffic lights system in special situation is given to illustrate that the proposed method is effective better than the existing method.

  • PDF

Traffic signal control system using fuzzy logic (Fuzzy logic을 利用한 交通 信號 control system)

  • 文珠永;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.180-183
    • /
    • 1996
  • This work discusses simulation results for the fuzzy logic controller tested the project“Fuzzy Ramp Metering Algorithm Implementation.”The performance objectives were, in order of priority, to maximize total vehicle-miles, maximize mainline speeds, and minimize delay per vehicle while maintaining an acceptable ramp queue. In the fuzzy logic controller, the sensors from the on-ramps were helpful in maintaining reasonable ramp queue and mainline congestion because it considered these factors simultaneously. Each metered ramp had a parameter input file, which allowed the controller to be modified without recompiling the software. Consequently, maintenance costs should be minimal.

  • PDF

Development of the Traffic Actuation Signal Control System Based on Fuzzy Logic on an Arterial Street (Fuzzy Logic을 적용한 간선도로 상의 교통감응 신호제어)

  • 진선미;김성호;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.71-83
    • /
    • 2003
  • An arterial street control is performed for the purpose of the progression of a traffic flow using the arterial. However during the progression in the arterial, the change according to the time is one of the most representative problems occurring at a signal plan. This paper intends to efficiently operate the arterial progression by applying fuzzy logic, which is thought to be the most possible one in the inference as that of the human logic, to the traffic responsive control system. Fuzzy Logic controller is appliable to the daily human language (linguistic). can be dealt with the uncertain traffic data and is useful on planning the signal control to sensitively confront the randomly changing traffic condition. This study, based on the signal control part of the isolated intersection in "A Development of a Real-time, Traffic Adaptive Control Scheme Through VIDs"(Seong Ho. Kim. 1996). suggested the strategy for the progression control in the arterial and analyzed its effect by comparing the effect of the existing control method. In addition, the study compared each effect by using TRAF-NETSIM which is the traffic simulation software to analyze each control method.

Proposal of Road Traffic Safety Facilities Equipment and Devices Integrated Management System (교통안전시설 장치 통합 관제 시스템 제안)

  • JeongHo Kho;Eum Han;Lee Eun Jin;Lee BoEun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.673-674
    • /
    • 2023
  • 도로교통의 안전 확보와 사고 예방을 목적으로 운전자나 보행자에게 필요한 정보를 제공하기 위해 경찰청에서 규격 또는 지침으로 제정하여 노변에 설치되는 교통안전시설 장치는 교통신호정보를 받기 위한 통신선과 함께 장치 구동을 위한 전원선을 개별로 시공해야 하기에 시공 비용의 절감과 함께 다종·다형의 장치에 대하여 통합적인 관제, 확장성, 유연성에 대응할 필요성이 제기되고 있다. 이에 본 논문에서는 이더넷 통신을 기반으로 전원 공급이 하나의 케이블로 가능한 이더넷 전원장치(PoE) 기술과 IoT 프로토콜인 MQTT를 이용하여 다종·다형의 교통안전시설 장치를 통합관제하고, 확장성과 유연성을 가지는 교통안전시설 장치 통합 시스템을 제안한다.

  • PDF