• Title/Summary/Keyword: traffic counting

Search Result 43, Processing Time 0.022 seconds

Selection of the Optimal Traffic Counting Links using Integer Program Method for Improving the Estimation of Origin Destination Matrix (기종점 OD행렬의 추정력 향상을 위한 교통량 관측구간 선정)

  • Lee, Heon-Ju;Lee, Seung-Jae;Park, Yong-Kil
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • When we estimate an origin-destination matrix from traffic counts. origin-destination matrix estimation from traffic counts according to the selected optimal traffic counting links is method for improving the results of origin-destinaation matrix estimation and for increasing economic efficiency. This paper proposed model of selecting traffic counting links using integer program technique, and selected a traffic counting links using this model, and estimated and origin-destingtion matrix from traffic counts according to the selected optimal traffic counting links. Also, we compared a result of estimating origin-destination matrix from the selected optimal traffic counting links using this model to a result of estimating origin-destination matrix from the randomly selected traffic counting links. The error analysis result was more improved a result of origin-destination matrix estimation using this model than a result of randomly selected links.

Selection of the Optimal Location of Traffic Counting Points for the OD Travel Demand Estimation (기종점 수요추정을 위한 교통량 관측지점의 적정위치 선정)

  • 이승재;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.53-63
    • /
    • 2003
  • The Origin-Destination(OD) matrix is very important in describing transport movements in a region. The OD matrix can be estimated using traffic counts on links in the transport network and other available information. This information on the travel is often contained in a target OD matrix and traffic counts in links. To estimate an OD matrix from traffic counts, they are the major input data which obviously affects the accuracy of the OD matrix estimated, Generally, the quality of an estimated OD matrix depends much on the reliability of the input data, and the number and locations of traffic counting points in the network. Any Process regarding the traffic counts such as the amount and their location has to be carefully studied. The objective of this study is to select of the optimal location of traffic counting points for the OD matrix estimation. The model was tested in nationwide network. The network consists of 224 zones, 3,125 nodes and 6,725 links except to inner city road links. The OD matrix applied for selection of traffic counting points was estimated to 3-constrained entropy maximizing model. The results of this study follow that : the selected alternative to the best optimal counting points of six alternatives is the alternative using common links of OD matrix and vehicle-km and traffic density(13.0% of 6,725 links), however the worst alternative is alternative of all available traffic counting points(44.9% of 6,725 links) in the network. Finally, it should be concluded that the accuracy of reproduced OD matrix using traffic counts related much to the number of traffic counting points and locations.

A Novel Vehicle Counting Method using Accumulated Movement Analysis (누적 이동량 분석을 통한 영상 기반 차량 통행량 측정 방법)

  • Lim, Seokjae;Jung, Hyeonseok;Kim, Wonjun;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • With the rapid increase of vehicles, various traffic problems, e.g., car crashes, traffic congestions, etc, frequently occur in the road environment of the urban area. To overcome such traffic problems, intelligent transportation systems have been developed with a traffic flow analysis. The traffic flow, which can be estimated by the vehicle counting scheme, plays an important role to manage and control the urban traffic. In this paper, we propose a novel vehicle counting method based on predicted centers of each lane. Specifically, the centers of each lane are detected by using the accumulated movement of vehicles and its filtered responses. The number of vehicles, which pass through extracted centers, is counted by checking the closest trajectories of the corresponding vehicles. Various experimental results on road CCTV videos demonstrate that the proposed method is effective for vehicle counting.

Adaptive Counting Line Detection for Traffic Analysis in CCTV Videos (CCTV영상 내 교통량 분석을 위한 적응적 계수선 검출 방법)

  • Jung, Hyeonseok;Lim, Seokjae;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • Recently, with the rapid development of image recognition technology, the demand for object analysis in road CCTV videos is increasing. In this paper, we propose a method that can adaptively find the counting line for traffic analysis in road CCTV videos. First, vehicles on the road are detected, and the corresponding positions of the detected vehicles are modeled as the two-dimensional pointwise Gaussian map. The paths of vehicles are estimated by accumulating pointwise Gaussian maps on successive video frames. Then, we apply clustering and linear regression to the accumulated Gaussian map to find the principal direction of the road, which is highly relevant to the counting line. Experimental results show that the proposed method for detecting the counting line is effective in various situations.

Pedestrian Traffic Counting Using HoG Feature-Based Person Detection and Multi-Level Match Tracking (HoG 특징 기반 사람 탐지와 멀티레벨 매칭 추적을 이용한 보행자 통행량 측정 알고리즘)

  • Kang, Sung-Wook;Jung, Jin-dong;Seo, Hong-il;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.385-392
    • /
    • 2016
  • Market analysis for a business plain is required for the success in the modern world. Most important part in this analysis is pedestrian traffic counting. A traditional way for this is counting it in person. However, it causes high labor costs and mistakes. This paper proposes an automatic algorithm to measure the pedestrian traffic count using images with webcam. The proposed algorithm is composed of two parts: pedestrian area detection and movement tracking. In pedestrian area detection, moving blobs are extracted and pedestrian areas are detected using HoG features and Adaboost algorithm. In movement tracking, multi-level matching and false positive removal are applied to track pedestrian areas and count the pedestrian traffic. Multi-level matching is composed of 3 steps: (1) the similarity calculation between HoG area, (2) the similarity calculation of the estimated position with Kalman filtering, and (3) the similarity calculation of moving blobs in the pedestrian area detection. False positive removal is to remove invalid pedestrian area. To analyze the performance of the proposed algorithm, a comparison is performed with the previous human area detection and tracking algorithm. The proposed algorithm achieves 83.6% accuracy in the pedestrian traffic counting, which is better than the previous algorithm over 11%.

The Development of Vehicle Counting System at Intersection Using Mean Shift (Mean Shift를 이용한 교차로 교통량 측정 시스템 개발)

  • Chun, In-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.38-47
    • /
    • 2008
  • A vehicle counting system at intersection is designed and implemented using analyzing a video stream from a camera. To separate foreground image from background, we compare three different methods, among which Li's method is chosen. Blobs are extracted from the foreground image using connected component analysis and the blobs are tracked by a blob tracker, frame by frame. The primary tracker use only the size and location of blob in foreground image. If there is a collision between blobs, the mean-shift tracking algorithm based on color distribution of blob is used. The proposed system is tested using real video data at intersection. If some huristics is applied, the system shows a good detection rate and a low error rate.

  • PDF

Origin and destination matrix estimation using Toll Collecting System and AADT data (관측 TCS data 및 AADT 교통량을 이용한 기종점 교통량 보정에 관한 연구)

  • 이승재;장현호;김종형;변상철;이헌주;최도혁
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.49-59
    • /
    • 2001
  • In the transportation planning process, origin and destination(O-D) trip matrix is one of the most important elements. There have been developments and applications of the methodology to adjust old matrices using link traffic counts. Commonly, the accuracy of an adjusted O-D matrix depends very much on the reliability of the input data such as the numbers and locations of traffic counting points in the road network. In the real application of the methodology, decisions on the numbers and locations of traffic counting points are one of the difficult problems, because usually as networks become bigger, the numbers of traffic counting points are required more. Therefore, this paper investigates these issues as an experiment using a nationwide network in Korea. We have compared and contrasted the set of link flows assigned by the old and the adjusted O-D matrices with the set of observed link flows. It has been analyzed by increasing the number of the traffic counting points on the experimental road network. As a result of these analyses, we can see an optimal set of the number of counting links through statistical analysis, which are approximately ten percentages of the total link numbers. In addition, the results show that the discrepancies between the old and the adjusted matrices in terms of the trip length frequency distributions and the assigned and the counted link flows are minimized using the optimal set of the counted links.

  • PDF

Optical Flow Based Vehicle Counting and Speed Estimation in CCTV Videos (Optical Flow 기반 CCTV 영상에서의 차량 통행량 및 통행 속도 추정에 관한 연구)

  • Kim, Jihae;Shin, Dokyung;Kim, Jaekyung;Kwon, Cheolhee;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.448-461
    • /
    • 2017
  • This paper proposes a vehicle counting and speed estimation method for traffic situation analysis in road CCTV videos. The proposed method removes a distortion in the images using Inverse perspective Mapping, and obtains specific region for vehicle counting and speed estimation using lane detection algorithm. Then, we can obtain vehicle counting and speed estimation results from using optical flow at specific region. The proposed method achieves stable accuracy of 88.94% from several CCTV images by regional groups and it totally applied at 106,993 frames, about 3 hours video.

An Efficient Group Key Management Scheme using Counting Bloom Filter in VANET (VANET에서 카운팅 블룸 필터를 사용한 효율적인 그룹 키 관리 기법)

  • Lee, SuYoun;Ahn, HyoBeom
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • VANET(Vehicular Ad-hoc Network) is a kind of ad hoc networks which is consist of intelligence vehicular ad nodes, and has become a hot emerging research project in many fields. It provides traffic safety, cooperative driving and etc. but has also some security problems that can be occurred in general ad hoc networks. In VANET, it has been studies that group signature method for user privacy. However, among a group of group key generation phase and group key update phase, RSU(Road-Side Unit) and the computational overhead of the vehicle occur. In this paper, we propose an efficient group key management techniques with CBF(Counting Bloom Filter). Our group key management method is reduced to the computational overhead of RSU and vehicles at the group key generation and renewal stage. In addition, our method is a technique to update group key itself.

Performance Analysis of an Anisotropic Magnetoresistive Sensor-Based Vehicle Detector (Anisotropic Magnetoresistive 센서를 이용한 차량 검지기의 성능분석)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.598-604
    • /
    • 2009
  • This paper proposes a vehicle detector with an anisotropic magnetoresistive (AMR) sensor and addresses experimental results to show the detector's performance. The detector consists of an AMR sensor and mechanical and electronic apparatuses. The AMR sensor, composed of four magnetoresistors, senses disturbance of the earth's magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. This paper verifies performance of the detector on the basis of experimental results obtained from the field tests carried under the two traffic conditions on local highways in Korea. First, I show the vehicle counting performance on a low speed congested highway by comparing the vehicle counts measured by the detector with the exact counts. Second, both vehicle counts and average speeds calculated from the measured point-occupancy on another continuously free running highway are compared with the reference values obtained from a loop detector which has two independent loop coils, where I have used several performance indices including mean absolute percentage error (MAPE) to show the performance consistency between the two types of detectors.