• Title/Summary/Keyword: traffic aware

Search Result 177, Processing Time 0.024 seconds

LTRE: Lightweight Traffic Redundancy Elimination in Software-Defined Wireless Mesh Networks (소프트웨어 정의 무선 메쉬 네트워크에서의 경량화된 중복 제거 기법)

  • Park, Gwangwoo;Kim, Wontae;Kim, Joonwoo;Pack, Sangheon
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.976-985
    • /
    • 2017
  • Wireless mesh network (WMN) is a promising technology for building a cost-effective and easily-deployed wireless networking infrastructure. To efficiently utilize limited radio resources in WMNs, packet transmissions (particularly, redundant packet transmissions) should be carefully managed. We therefore propose a lightweight traffic redundancy elimination (LTRE) scheme to reduce redundant packet transmissions in software-defined wireless mesh networks (SD-WMNs). In LTRE, the controller determines the optimal path of each packet to maximize the amount of traffic reduction. In addition, LTRE employs three novel techniques: 1) machine learning (ML)-based information request, 2) ID-based source routing, and 3) popularity-aware cache update. Simulation results show that LTRE can significantly reduce the traffic overhead by 18.34% to 48.89%.

QoS-Aware Approach for Maximizing Rerouting Traffic in IP Networks

  • Cui, Wenyan;Meng, Xiangru;Yang, Huanhuan;Kang, Qiaoyan;Zhao, Zhiyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4287-4306
    • /
    • 2016
  • Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.

Implementation of Mobile Digital Signage System on the Moving Vehicle (차량 탑재형 모바일 디지털 사이니지 구현)

  • Kim, Hee Dong;Kim, Cha Sung
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.257-267
    • /
    • 2015
  • We propose a vehicle-mounted, location-aware mobile digital signage system that can be used for public transportation through mobile communication. This paper proposes the installations of the LED display panels at the backside of the bus., which display traffic information to cars behind the bus. Information to be displayed would include, but is not limited to, road information, public commercials and private commercials. We propose the system architecture and further implement the prototype of mobile digital signage system for demonstration. The system is based on the Client-Server system. Each bus has a client terminal which detects the current location by a GPS receiver and sends its location information to the server using mobile communication function. The terminal device receives advertisements and traffic information from the server and displays it to the large LCD or LED panel installed at the inside and outside of the bus. We use the Android smartphone as a client system, which inherently equipped with GPS and mobile communication function. GPS detects the location of bus and reports its geo-location data to the traffic information center server via a wireless communication network. On the server side, we developed a specially designed control server, where it communicates with the other traffic information center and updates and manages the databases contents being displayed by each position. The server contains location dependent variable information and returns selected information back to the vehicle in real time. Spatial database is used to process location based data. Server system periodically receives the real time traffic information from the road information center database. And it process the information by bus location and bus line number. In this paper, we propose a mobile digital signage service and explain the system implementation of this service.

Evaluation of Urban Freeway Traffic Management Strategies Using Variable Message Signs (도시고속도로 교통류 관리를 위한 가변전광판 정보 제공 방안 평가)

  • 강정규;정철훈
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.91-102
    • /
    • 1999
  • The objective of this study is to evaluate traffic management strategies using Variable Message Signs(MCS) on urban freeways. It is well known that real-time information on traffic conditions increases driver's comfort, and reduces the risks of accidents if drivers are aware of the traffic situation in advance, they decide whether to divert from the freeway or continue on the planned route. The experimental data collected on the Olympic highway we have shown the following results : 1. when the information on both the congested freeway and uncontested diversion route is displayed on the variable message sign. an additional 1.7 percent of traffic diverted, which results in a 3.7 percent reduction in total travel time. 2 Compared with one Proposed VMS message of 'reduce the speed', the other Proposed VMS message of 'keep speed 70km/h' is found to be much more effective in reducing mean speed.

  • PDF

Tactical Service Mesh for Intelligent Traffic QoS Coordination over Future Tactical Network (미래 전술망의 지능적 트래픽 QoS 조율을 위한 전술 서비스 메쉬)

  • Kang, Moonjoong;Shin, Jun-Sik;Park, Juman;Park, Chan Yi;Kim, JongWon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.369-381
    • /
    • 2019
  • As tactical networks are gradually shifting toward IP-based flexible operation for diversified battlefield services, QoS(Quality-of-Service) coordination for service differentiation becomes essential to overcome the heterogeneous and scarce networking resources limitations. QoS coordination for tactical network traffic should be able to monitor and react the dynamic changes in underlying network topology and service priorities. In this paper, by adopting the emerging cloud-native service mesh concept into tactical network context, we study the feasibility of intelligent QoS coordination by employing tactical service mesh(TSM) as an additional layer to support enhanced traffic quality monitoring and control. The additional TSM layer can leverage distributed service-mesh proxies at tactical mesh WAN(Wide Area Network) nodes so that service-aware differentiated QoS coordination can be effectively designed and integrated with TSM-assisted traffic monitoring and control. Also, by validating the feasibility of TSM layer for QoS coordination with miniaturized experimental setup, we show the potential of the proposed approach with several approximated battlefield traffics over a simulated TSM-enabled tactical network.

CAWR: Buffer Replacement with Channel-Aware Write Reordering Mechanism for SSDs

  • Wang, Ronghui;Chen, Zhiguang;Xiao, Nong;Zhang, Minxuan;Dong, Weihua
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.147-156
    • /
    • 2015
  • A typical solid-state drive contains several independent channels that can be operated in parallel. To exploit this channel-level parallelism, a variety of works proposed to split consecutive write sequences into small segments and schedule them to different channels. This scheme exploits the parallelism but breaks the spatial locality of write traffic; thus, it is able to significantly degrade the efficiency of garbage collection. This paper proposes a channel-aware write reordering (CAWR) mechanism to schedule write requests to different channels more intelligently. The novel mechanism encapsulates correlated pages into a cluster beforehand. All pages belonging to a cluster are scheduled to the same channels to exploit spatial locality, while different clusters are scheduled to different channels to exploit the parallelism. As CAWR covers both garbage collection and I/O performance, it outperforms existing schemes significantly. Trace-driven simulation results demonstrate that the CAWR mechanism reduces the average response time by 26% on average and decreases the valid page copies by 10% on average, while achieving a similar hit ratio to that of existing mechanisms.

RDP: A storage-tier-aware Robust Data Placement strategy for Hadoop in a Cloud-based Heterogeneous Environment

  • Muhammad Faseeh Qureshi, Nawab;Shin, Dong Ryeol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4063-4086
    • /
    • 2016
  • Cloud computing is a robust technology, which facilitate to resolve many parallel distributed computing issues in the modern Big Data environment. Hadoop is an ecosystem, which process large data-sets in distributed computing environment. The HDFS is a filesystem of Hadoop, which process data blocks to the cluster nodes. The data block placement has become a bottleneck to overall performance in a Hadoop cluster. The current placement policy assumes that, all Datanodes have equal computing capacity to process data blocks. This computing capacity includes availability of same storage media and same processing performances of a node. As a result, Hadoop cluster performance gets effected with unbalanced workloads, inefficient storage-tier, network traffic congestion and HDFS integrity issues. This paper proposes a storage-tier-aware Robust Data Placement (RDP) scheme, which systematically resolves unbalanced workloads, reduces network congestion to an optimal state, utilizes storage-tier in a useful manner and minimizes the HDFS integrity issues. The experimental results show that the proposed approach reduced unbalanced workload issue to 72%. Moreover, the presented approach resolve storage-tier compatibility problem to 81% by predicting storage for block jobs and improved overall data block placement by 78% through pre-calculated computing capacity allocations and execution of map files over respective Namenode and Datanodes.

Cache Simulator Design for Optimizing Write Operations of Nonvolatile Memory Based Caches (비휘발성 메모리 기반 캐시의 쓰기 작업 최적화를 위한 캐시 시뮬레이터 설계)

  • Joo, Yongsoo;Kim, Myeung-Heo;Han, In-Kyu;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Nonvolatile memory (NVM) is being considered as an alternative of traditional memory devices such as SRAM and DRAM, which suffer from various limitations due to the technology scaling of modern integrated circuits. Although NVMs have advantages including nonvolatility, low leakage current, and high density, their inferior write performance in terms of energy and endurance becomes a major challenge to the successful design of NVM-based memory systems. In order to overcome the aforementioned drawback of the NVM, extensive research is required to develop energy- and endurance-aware optimization techniques for NVM-based memory systems. However, researchers have experienced difficulty in finding a suitable simulation tool to prototype and evaluate new NVM optimization schemes because existing simulation tools do not consider the feature of NVM devices. In this article, we introduce a NVM-based cache simulator to support rapid prototyping and evaluation of NVM-based caches, as well as energy- and endurance-aware NVM cache optimization schemes. We demonstrate that the proposed NVM cache simulator can easily prototype PRAM cache and PRAM+STT-RAM hybrid cache as well as evaluate various write traffic reduction schemes and wear leveling schemes.

An Access Control System for Ubiquitous Computing based on Context Awareness (상황 인식 기반의 유비쿼터스 컴퓨팅을 위한 접근 제어 시스템)

  • Lee, Ji-Yeon;Ahn, Joon-Seon;Doh, Kyung-Goo;Chang, Byeong-Mo
    • The KIPS Transactions:PartA
    • /
    • v.15A no.1
    • /
    • pp.35-44
    • /
    • 2008
  • It is important to manage access control for secure ubiquitous applications. In this paper, we present an access-control system for executing policy file which includes access control rules. We implemented Context-aware Access Control Manager(CACM) based on Java Context-Awareness Framework(JCAF) which provides infrastructure and API for creating context-aware applications. CACM controls accesses to method call based on the access control rules in the policy file. We also implemented a support tool to help programmers modify incorrect access control rules using static analysis information, and a simulator for simulating ubiquitous applications. We describe simulation results for several ubiquitous applications.

CASPER: Congestion Aware Selection of Path with Efficient Routing in Multimedia Networks

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Diwakar, Khushboo
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.241-260
    • /
    • 2011
  • In earlier days, most of the data carried on communication networks was textual data requiring limited bandwidth. With the rise of multimedia and network technologies, the bandwidth requirements of data have increased considerably. If a network link at any time is not able to meet the minimum bandwidth requirement of data, data transmission at that path becomes difficult, which leads to network congestion. This causes delay in data transmission and might also lead to packet drops in the network. The retransmission of these lost packets would aggravate the situation and jam the network. In this paper, we aim at providing a solution to the problem of network congestion in mobile ad hoc networks [1, 2] by designing a protocol that performs routing intelligently and minimizes the delay in data transmission. Our Objective is to move the traffic away from the shortest path obtained by a suitable shortest path calculation algorithm to a less congested path so as to minimize the number of packet drops during data transmission and to avoid unnecessary delay. For this we have proposed a protocol named as Congestion Aware Selection Of Path With Efficient Routing (CASPER). Here, a router runs the shortest path algorithm after pruning those links that violate a given set of constraints. The proposed protocol has been compared with two link state protocols namely, OSPF [3, 4] and OLSR [5, 6, 7, 8].The results achieved show that our protocol performs better in terms of network throughput and transmission delay in case of bulky data transmission.