
ETRI Journal, Volume 37, Number 1, February 2015 © 2015 Ronghui Wang et al. 147
http://dx.doi.org/10.4218/etrij.15.0114.0055

A typical solid-state drive contains several independent
channels that can be operated in parallel. To exploit this
channel-level parallelism, a variety of works proposed to
split consecutive write sequences into small segments and
schedule them to different channels. This scheme exploits
the parallelism but breaks the spatial locality of write
traffic; thus, it is able to significantly degrade the efficiency
of garbage collection. This paper proposes a channel-
aware write reordering (CAWR) mechanism to schedule
write requests to different channels more intelligently. The
novel mechanism encapsulates correlated pages into a
cluster beforehand. All pages belonging to a cluster are
scheduled to the same channels to exploit spatial locality,
while different clusters are scheduled to different channels
to exploit the parallelism. As CAWR covers both garbage
collection and I/O performance, it outperforms existing
schemes significantly. Trace-driven simulation results
demonstrate that the CAWR mechanism reduces the
average response time by 26% on average and decreases
the valid page copies by 10% on average, while achieving
a similar hit ratio to that of existing mechanisms.

Keywords: SSD, multichannel, buffer replacement,
parallelism, garbage collection, write reordering.

Manuscript received Jan. 13, 2014; revised May 20, 2014; accepted June 16, 2014.
 Ronghui Wang (corresponding author, ronghuiw@gmail.com), Zhiguang Chen

(chengzhiguanghit@gmail.com), Nong Xiao (nongxiao@nudt.edu.cn), and Minxuan Zhang
(mxzhang@nudt.edu.cn) are with the School of Computer, National University of Defense
Technology, Hunan, China

Weihua Dong (ttinywolf@gmail.com) is with the Department of Software, the State Key
Laboratory of Astronautic Dynamics, Hangzhou, China.

I. Introduction

Due to the improved bandwidth and random I/O
performance, NAND flash–based solid-state drives (SSDs) are
replacing hard disk drives (HDDs) in high-end enterprise-scale
storage systems and high-performance computing (HPC)
environments. However, flash memory exhibits some
peculiarities that are incompatible with existing software stacks.
Accordingly, SSDs internally employ a flash translation layer
(FTL) to hide the idiographic characteristic of flash memory
and to mimic themselves as block devices. FTL provides an
address mapping between the logical addresses used by the
host and the physical addresses used in flash memory. Besides
this, FTL internally issues extra read, write, or erase operations
to efficiently manage the storage space, and the number of
those extra operations depends both on the data access pattern
from the upper layer and the algorithm adopted by the address
mapping.

As Fig. 1 shows, the modern SSD uses an on-disk buffer in-
between the host interface and the FTL. The buffer stores data
from the host first and then writes the data to the NAND flash
memory afterwards. The replacement policy employed by the
write buffer should take both the write sequence and the FTL
algorithm into account. Furthermore, as the SSD usually
contains several independent channels, the replacement policy
is also responsible for scheduling write requests among these
channels to exploit parallelism. Most existing buffer
replacement policies do not consider hardware parallelism, and
their evicting sequence contains quite a number of consecutive
pages even from a page-level buffer. When these buffer
policies are applied to independent channels, directly
scheduling the consecutive sequence to separate channels does
help to exploit parallelism; however, this will increase the

CAWR: Buffer Replacement with Channel-Aware
 Write Reordering Mechanism for SSDs

 Ronghui Wang, Zhiguang Chen, Nong Xiao, Minxuan Zhang, and Weihua Dong

148 Ronghui Wang et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0055

Fig. 1. SSD overview: proposed CAWR is applied to the buffer
inside the SSD.

Host system

On-disk buffer (CAWR)

FTL

Multi-channel architecture

Flash memory chips

SSD

overhead of garbage collection significantly, since scheduling a
consecutive write sequence to multiple channels will break
the spatial locality of write traffic. There are only two buffer
policies designed for independent channels. Chang and others
[1] proposed a gating buffer to collect requests and
instantaneously flush a page to every channel in parallel, but
they did not designate the write pattern. CAVE [2] is another
buffer policy that makes use of a multiple eviction technique
capable of maintaining the sequential pattern of a block-level
buffer. However, its round-robin channel allocation manner
may break the sequential order of the block; moreover, it
cannot address the consecutive pages with page-level buffer
replacement policies.

This paper proposes a channel-aware write reordering
(CAWR) mechanism to recognize the patterns of pages to be
evicted from the buffer. In this work, the buffer is logically
partitioned into two regions. The first region is managed by the
buffer replacement policy in the traditional manner. Pages
evicted from the first region are delivered to the second region.
In this region, correlated pages are encapsulated into a cluster.
When buffer replacement is required, the CAWR mechanism
schedules a cluster to each channel, guaranteeing that all
channels are operated in parallel. Furthermore, as all pages in a
given cluster are correlated, scheduling the entire cluster to a
given channel guarantees that the spatial locality of write
traffic remains intact. In conclusion, the CAWR mechanism
aggressively exploits the parallelism among channels and thus
achieves a higher I/O performance. On the other hand, as
correlated pages are scheduled to the same channel and even
written to the same physical block, the overhead of garbage
collection is significantly reduced.

CAWR bridges the information gap between the buffer
replacement policy and the hardware architecture. The existing
multiple eviction techniques need the buffer to identify the
page pattern; otherwise, the sequential order will be totally lost.
However, if the working cache organizes the cached data into

clusters, because of the possibility of mixing cold data and hot
data inside a cluster, the cold pages will stay in the cache with
the hot ones if they belong to the same cluster, causing a waste
of cache space and a degradation of the hit ratio. In addition,
page-level mapping FTLs remove the block merge, releasing
the constraint of block borders; thus, the advantage of a cluster-
organized buffer to create larger sequential writes is lost.
CAWR aims at small sequential pages naturally generated
from the cache. It organizes the page clusters at the end of the
buffer, only for the pages that have already been identified as
cold data to be evicted; thus, the working cache region need
only focus on the hit ratio and read-write asymmetry of the
flash memory.

We implement the CAWR with a page-level replacement
policy and simulate it in a flash-based SSD simulator with
realistic workloads. The experimental results show that CAWR
does not critically affect the hit ratio of an on-disk buffer. By
reordering the page sequence, the number of reclaiming
operations is reduced, and by evicting multiple pages
simultaneously, the performance is improved. Compared to the
CAVE, with the same replacement policy, our method reduces
the garbage collection overhead, and as a consequence of doing
so, slightly improves the performance.

II. Background

NAND flash memory consists of a number of blocks, each
of which consists of the same number of pages. There are three
basic operations for a NAND flash memory: read, write
(program), and erase. A block is a basic unit of erase operations,
while a page is a basic unit of read and write operations. A
write operation is much slower than a read, while an erase
operation is even slower than a write. If a page has been written,
it cannot be overwritten until the block that the page belongs
to is erased; that is, the erase-before-write characteristic.
Therefore, flash memory uses “out-of-place write” rather than
“in-place write” in HDDs. Furthermore, the number of erasures
that each block can survive is limited — 10,000 times for
multi-level cell or 100,000 times for single-level cell flash
memory.

Flash storage devices internally employ an FTL to hide the
characteristic of flash memory and emulate it as a block device.
The most important function of the FTL is to maintain a
mapping between the logical block addresses (LBAs) used by
the host and the physical block and page addresses used in
flash memory. This mapping can either be at the page level,
block level, or hybrid level. Although, as far as we know, most
current commercial SSD products employ the hybrid-mapping
FTL schemes, these FTLs usually perform, arguably, more
poorly than page-mapping FTLs. The only weakness of a

ETRI Journal, Volume 37, Number 1, February 2015 Ronghui Wang et al. 149
http://dx.doi.org/10.4218/etrij.15.0114.0055

page-mapping FTL is that it consumes a prohibitively large
RAM space to store the page-mapping information. With
techniques for optimizing the huge demand on the RAM,
such as DFTL [3] and HAT [4], page-mapping FTLs are a
promising alternative to the hybrid schemes. Another basic
function of an FTL is that it cleans blocks for reuse. This
function is performed by a garbage collector, which recycles
blocks after all the valid pages within them have been migrated
elsewhere. Moreover, for the limited program-erase cycle
count, an FTL adopts a wear-leveling technique to maximize
the endurance of the flash memory, keeping as many writable
blocks as possible.

Modern NAND flash–based SSDs consist of multiple
channels, where each channel has multiple NAND flash
memory chips. The multiple channels of SSDs can be
organized as synchronized channels or independent channels.
Synchronized channels have all channels perform the same
flash command at the same flash address. The pages and
blocks of the same flash addresses in all channels form a super
page and a super block, which scales up the unit sizes of read-
write and erase by the total number of channels. It provides
high I/O throughput but dramatically increases the read-
modify-write overhead [1] and garbage collection overhead [2].
Independent channels carry out flash operations on their own
data, commands, and addresses. It is more flexible, but the
problem of how to maintain high channel utilization is a big
design obstacle. An FTL should take the hardware architecture
into account for independent channels. Our method is designed
for independent channels too, exploiting the channel-level
parallelism from the upper layer.

In addition to the array of flash chips and the FTL, SSD has
an on-disk buffer. The buffer holds the metadata of the FTL
and also works as a cache to improve performance. The
replacement policy employed by the buffer should take both
the characteristics of the flash memory and the FTL algorithm
into account. Since currently commercial SSDs employ a
hybrid-mapping FTL, some buffer replacement policies try to
decrease the number of merge operations by clustering pages
in the same block and destaging them at the same time. With a
page-mapping FTL, since the page can be placed anywhere,
buffer management policies need not consider the block
borders.

III. Related Work

According to the replacement granularity, the flash-aware
buffer replacement policies can be classified into two types:
page level and block level. The Least Recently Used (LRU)
policy is the basis for most of these policies. Block-level
replacement policies organize the buffered data in the unit of

block. When a replacement is needed, they replace data of a
whole block or several pages that belong to one block. For
example, FAB [5] maintains an LRU block list: the pages that
belong to the same physical block of flash memory are
grouped together, and a group is moved to the Most Recently
Used (MRU) position of the list when the group reads, updates,
or inserts a page. FAB selects the block with the most number
of pages to produce larger sequential writes. BPLRU [6] targets
to random write patterns and uses the page padding technique
to change the fragmented write patterns to sequential ones.
CLC [7] selects a cold large cluster as a victim to increase
the hit ratio. Block-level replacement policies produce large
sequential writes; however, it is hard for them to treat read and
write operations differently; thus, some of them work only as a
write buffer and simply redirect the non-cached read requests
to the beneath layer.

Page-level replacement policies replace data in the unit
of page. Most existing page-level algorithms (for example,
CFLRU [8] and LRU-WSR [9]) focus on the asymmetric
latencies between read and write in flash-based storage systems,
trying to give a higher priority towards evicting clean pages
rather than dirty pages (that is, a clean-first policy). CFLRU
and LRU-WSR do not consider the access frequencies of data.
They merely keep cold dirty data and evict hot clean data; thus,
they may degrade the overall I/O performance. CCF-LRU [10]
further refines the idea of LRU-WSR by distinguishing cold-
clean from hot-clean pages. Cold pages are distinguished from
hot pages using the second chance algorithm. They define four
types of eviction costs: cold-clean, cold-dirty, hot-clean, and
hot-dirty, with increasing priority. The aforementioned page-
level policies do not address the write patterns. REF [11]
chooses a page having the same logical block number that is
recently evicted as a victim for reducing a block merge number
and associativity; however, it does not distinguish between the
clean and dirty states of pages.

Existing buffer replacement policies do not consider the
parallelism exhibited by the multichannel architecture of
modern SSDs. Chang and others [1] proposed a gating buffer
to collect requests and instantaneously flush a page to every
channel in parallel. CAVE [2] shares the same idea but is more
specific. CAVE is claimed to work well with block-level and
page-level replacement policies: it only considers the eviction
rate, while replacement policies only focus on the eviction
order. Figure 2 gives examples of CAVE cooperating with
block-level and page-level policies. There are some problems
with CAVE: (a) when CAVE cooperates with block-level
replacement policies, since it uses a round-robin scheme for
allocating the channel number to a block, sequential pages
belonging to a given block will be written to different channels;
(b) when CAVE cooperates with page-level replacement

150 Ronghui Wang et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0055

Fig. 2. Examples of CAVE with buffer replacement policies: (a) block-level + CAVE and (b) page-level + CAVE.

P0

P1

P3

P0

P1

P1

P2

P4

P1

P2

P3

P1

P2

P1

P2

P3

P4

P0

P1

P2

B6 B5 B4 B3 B2 B1 B0 LRU

Multichannel

CH3 CH2 CH1 CH0

B3P1

B3P2

B4P1

B6P0

B2P1

B2P2

B3P3

B5P0

Block Block

B1P1

B1P2

B1P3

B4P2

Block

B0P0

B0P1

B0P2

B1P4

Block

(a)

CH3 CH2 CH1 CH0

P3

P7

P11

P2

P6

P10

Block Block

P1

P5

P9

Block

P0

P4

P8

Block

(b)

Multichannel

P13 P12 P11 P10 P9

P8 P7 P6 P5 P4

P3 P2 P1 P0
LRU

policies, it does not consider the write pattern of the evicted
pages and thus simply flushes multiple victims to different
parallel units. However, by recording the evicted page
sequences of some real-world workload traces, we find that
even page-level replacement policies flush quite a number of
sequential writes, on purpose or unconsciously. Striping these
sequential writes also breaks the spatial locality; and (c) CAVE
is only applied to a write buffer involving no caching for read
operations. Our proposed method applies itself well to a read-
write buffer and also solves the first two problems of CAVE.

IV. CAWR

1. Motivation and Two-Region Buffer

As we have mentioned, existing buffer replacement policies
do not exploit I/O parallelism, while gating buffer [1] and
CAVE [2] only consider the eviction rate. CAVE can partially
keep the sequential write pattern for block-level replacement
policies, but for page-level policies the pattern information is
totally lost. However, from some experiments of real-world
traces, we find that the pages flushed from the page-level buffer
can still be clustered, as can be the case with the original access
sequence. To evict multiple victims for increasing I/O
parallelism and to keep the spatial locality of sequential writes
inside a physical block, we propose the CAWR to bridge the
information gap between the buffer management policy and
the multichannel architecture.

We logically partition the buffer into two parts, as Fig. 3
shows. The first part is the working region that is managed by a
traditional cache replacement policy. The other is the
reordering region that is managed by CAWR. The sizes of the
two regions are dynamically changed, and only pages to be

Fig. 3. Structure of CAWR buffer.

On-disk buffer

Working region
(page-level or block-level)

Reordering
region

CH3 CH2 CH1 CH0

Multiple
eviction

replaced are logically partitioned into the reordering region. The
working region can adopt both block-level and page-level
replacement policies, obtaining the block-level CAWR and
page-level CAWR. For a page-level CAWR, cold pages are
retired from the working region, and then they enter into the
reordering region instead of being directly flushed into the flash
memory. In the reordering region, CAWR clusters correlated
pages for each channel, guaranteeing the spatial locality to write
traffic. Then when a buffer replacement is required, CAWR
evicts pages from each cluster to each channel simultaneously,
guaranteeing that all channels are operated in parallel.

When the working region employs a block-level policy, the
underlying FTL layer must apply a block-mapping or hybrid-
mapping FTL. The block-level CAWR should keep the block
borders and works almost like CAVE; multiple blocks are
destaged from the working region and enter into the reordering
region for multiple pages eviction. During the entering,
cleaning pages in those blocks are first evicted, so only dirty
pages remain in the channel clusters. Since the pages already
have been clustered in the working region, there is no need to
perform the reordering step. Because when a block enters into
one cluster the channel number has already been assigned and

ETRI Journal, Volume 37, Number 1, February 2015 Ronghui Wang et al. 151
http://dx.doi.org/10.4218/etrij.15.0114.0055

firmly fixed; thus, CAWR solves the problem that is caused
by round-robin allocating the channel number to a block.
However, because of the relatively lower hit ratio of block-
level buffer policies, page-level policies are more preferable for
CAWR. The following discussions mostly focus on the page-
level policy.

2. Write-Reordering and Multi-eviction Scheme

In the reordering region, CAWR uses multiple cold dirty lists
(CDLs), which will be illustrated in the next subsection to store
the pages to be flushed to flash memories. The number of lists
is equal to the number of channels in the SSD. When a page is
evicted by the working region, it is arranged into one of the
CDLs in the reordering region according to the replacement
sequence. Algorithm 1 describes how to arrange the pages, and
Fig. 4 gives an example of a multiple-pages eviction of a page-
level CAWR. Notice that this page-level CAWR is not
designed for a block-mapping or hybrid-mapping FTL, it only
organizes the cold dirty pages into page clusters without
designating the block borders. Otherwise, if the underlying
FTL applies a block or hybrid mapping, then the isSequence
condition (line 6 in Algorithm 1) to arrange pages should be
changed to a new condition that judges whether two pages
belong to the same block.

In Algorithm 1, the dirty page at the LRU position of the
working list first tries to append to a nonempty CDL (the first
FOR loop). If the page is not consecutive to any pages in all
CDLs, then this tentative step fails, and the page then tries to
append to an empty CDL (the second FOR loop). We also
define a maximum length for each CDL, avoiding a long
sequence of consecutive pages, which may result in a worse
cache hit ratio and failure of multiple eviction. The length of
each CDL can be between 4 and 16, because while we
examine the real-world workloads, most of the write requests
are less than four-times the page size (4 kB × 4 kB = 16 kB),
and it is seldom that writes are greater than sixteen-times the
page size (16 kB × 4 kB = 64 kB). Algorithm 1 only describes
how to move a cold dirty page, and when to move is described
in the next subsection by combining with the victim selection
algorithm of the buffer.

In Fig. 4, where it is assumed that there are four channels in
the SSD, the evicting pages are moved from the working LRU
list to CDLs on a one-by-one basis in accordance with
Algorithm 1. When we need to move the page 1,002, since it is
not consecutive to any pages in all other CDLs and each CDL
has at least a page, CAWR flushes the LRU pages (4, 309, 55,
and 100) of each list. After flushing, there is an empty list of
CDLs and the page 1,002 can then be moved in. Since the next
page of 7 is the consecutive page to 6, it can be moved into the

Algorithm 1. to CDLs

1: WL: working LRU list
2: item: the LRU dirty pate in WL
3: CDLs: cold dirty LRU list organized into channels
4: moved = false;
5: for (i = 0; i < ChannelSize; i + +) do
6: if ((CDLs[i] is not empty) & (CDLs[i] is not full)
 & (isSequence(item, CDLs[i]))) then
7: remove item from WL;
8: move item into MRU position in CDLs[i];
9: moved = true;

10: break;
11: end if
12: end for
13: if (!moved) then
14: for (i = 0; i < ChannelSize; i + +) do
15: if (CDLs[i] is empty) then
16: remove item from WL;
17: move item into MRU position in CDLs[i];
18: moved = true;
19: break;
20: end if
21: end for
22: end if
23: return moved;

Fig. 4. Example of flushing pages of CAWR.

6
5
4

CDL 0

310
309

CDL 1

58
57
56
55

CDL 2 CDL 3

100

6
5

CDL 0 CDL 1 CDL 2
310

58
57
56

Sequence of cold dirty pages in the working LRU list:
20, 7, 1,002, 100, 58, 57, 310, 56, 55, 309, 6, 5, 4 (LRU)

Move: 100, 58, 57, 310, 56, 55, 309, 6, 5, 4

Move: 7, 1,002

7
6
5

CDL 0
310

CDL 1

58
57
56

CDL 2 CDL 3

1,002

Flush

Flush

6
5

CDL 0 CDL 1

57
56

CDL 2 CDL 3

CH0 CH1 CH2 CH3

4 309 55 100

Block Block Block Block

Flash memories

CH0 CH1 CH2 CH3

4 309 55 100
5 310 56 1,002

Block Block Block Block

Flash memories

CDL 3

very list that contains page 6. As there is no place for the page of
20, CAWR again flushes the pages of 5, 310, 56, and 1,002. We
can see that by flushing pages in each page cluster, CAWR
changes the pattern of multiple evicted pages for a parallel write.

3. Clean-First Page-Level CAWR

In this subsection, we illustrate the overall design of a page-

152 Ronghui Wang et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0055

Fig. 5. Structure of page-level CAWR.

P7

Clean

Hot

MRU P6

Dirty

Hot

P5

Dirty

Hot

P4

Clean

Hot

P3

Dirty

Hot

P2

Dirty

Cold

P1

Dirty
Cold

P0

Dirty

Hot
L

Working region

CCL: cold clean list
MRU

P'2 P'1 P'0

L'

CDL[1]: cold dirty list 1

MRU

L1''

P1''3 P1''2 P1''1 P1''0

LRU

LRULRU

n = number of channels
CDL[n]: cold dirty list n

MRU Pn''2 Pn''1 Pn''0
LRU

Ln''

…

Reordering region

Buffer size = L+L'+L1''+ … +Ln''

WL: mixed working list

level CAWR, which cooperates with the extended CCF-LRU
page-level working region. The working region organizes the
buffered data in a list of pages, where each page contains a
clean/dirty bit and a hot/cold bit. Figure 5 shows the structure,
in which WL represents the working list of the working region.
There are several CDLs and a cold clean list (CCL) in the
reordering region, where the number of CDLs (n) is equal to
the number of channels. As we have mentioned in the previous
subsection, a maximum length for each CDL is defined; for
example, four, and if the device has four channels, then the
maximum size of a CDL is 4 kB × 4 kB × 4 kB = 64 kB. The
sizes of the WL, CCL, and CDLs are dynamically changed, the
sum of which is equal to the size of the cache.

When a replacement is needed, the victim selection starts, as
illustrated in Algorithm 2. The algorithm first evicts the LRU
page in the CCL (lines 5–6), and since a clean page can be
directly removed from the buffer, only one victim is selected
from the list at a time. If the clean list is empty, then the CDLs
are checked, trying to evict multiple pages whose number is
equal to that of the number of channels at any given time (lines
9–12). If the clean list and at least one dirty list are empty, then
the mixed working LRU list is scanned from the LRU position,
to move some cold pages to the cold lists (lines 14–29). The
dirty page in the working LRU list is given a second chance; a
clean page is directly moved to the CCL, while a dirty page is
marked from “hot” to “cold” in the first scan and will be
moved to the CDLs in the next scan. The moving between the
working list and the cold lists ends when the CDLs cannot be
moved in (none of the dirty lists are empty and the current cold
dirty page is not consecutive to the pages in the lists). After the
moving step, the selection algorithm is called again.

Algorithm 2. Victim selection

1: WL: working LRU list
2: CCL: cold clean LRU list
3: CDLs: cold dirty LRU list organized into channels
4: while (True) do

5: if (CCL is not empty) then
6: return the LRU pate in CCL;
7: else
8: if (All CDLs are not empty) then
9: for (i = 0; i < ChannelSize; i + +) do

10: victims[i] = the LRU page in CDLs[i];
11: end for
12: return victims;
13: else
14: item = the LRU page in WL;
15: while (item is Dirty) do
16: if (cold-flag of item is set) then
17: if (!toCDLs(item)) then
18: break;
19: end if
20: else
21: set cold-flag of item;
22: move item to MRU position in WL;
23: end if
24: item = the LRU page in WL;
25: end while
26: if (item is not dirty) then
27: remove item from WL;
28: move item into MRU position in CCL;
29: end if
30: end if
31: end if
32: end while

Table 1. Comparison of buffer management policies.

Technique R/W asymmetry Write pattern Parallelism

Block-level buffer No Yes No

CFLRU, LRU-WSR,
CCF-LRU

Yes No No

REF No Yes No

Gating buffer, CAVE No No Yes

CAVE + block-level No Yes (partial) Yes

CAVE + page-level No No Yes

CAWR (proposed) Yes Yes Yes

4. Comparison of Buffer Management Policies

The CAWR clusters the dirty pages to be evicted into
multiple lists. Each list, in turn, corresponds to a channel of the
SSD. The data to be written to flash memories is only flushed
from the reordering region, such flushing only occurring when
every channel has at least one outstanding page write. The
CAWR flushes the cold clean page first. It then clusters the
cold dirty pages and flushes them in multiples during each
eviction. Table 1 compares it with previous techniques.

ETRI Journal, Volume 37, Number 1, February 2015 Ronghui Wang et al. 153
http://dx.doi.org/10.4218/etrij.15.0114.0055

V. Performance Evaluation

1. Evaluation Setup

To evaluate the proposed mechanism, we use FlashSim [12]
as our simulation framework, implementing an on-disk buffer
with our page-level CAWR and an ideal page-level address
mapping FTL that extends the FTL described in [13]. To allow
parallel operations among independent channels, our FTL
keeps a write point for each channel. The multiple evicted
pages from the buffer are allocated to multiple write points
so that they can be operated in independent channels
simultaneously. The 1-channel garbage collection [2] is
triggered when the number of free blocks in a channel gets to a
certain threshold.

Flash memory chips are organized in four channels. Table 2
presents the parameters of the simulated flash memory. Two
financial workloads provided by Storage Performance Council
[14] and three MSR-series workloads [15] collected from
different production servers [16] in Microsoft's data centers are
employed as realistic I/O intensive traces. Financial workloads
represent the random access pattern; and the others represent
the sequential pattern. The size of the simulated device is fixed
and referenced LBAs larger than this size are filtered. Table 3
lists the characteristics of the workloads.

An initial process is simulated to fill the device and warm up
the FTL algorithm, writing all valid LBAs to the device. This
process generates an aged SSD in which cleaning is more
easily invoked. Statistics collection begins as the traces are

Table 2. Parameters of simulated flash memory.

Parameter Value

Page read to register 60 µs

Page program (write) from register 800 µs

Block erase 1.5 ms

Page size 4 kB

Table 3. Characteristics of workload traces.

Write size (%)

Write

(%)
Average
interval 4 kB

4 kB

–16 kB

16 kB

–64 kB
> 64 kB

Financial1 76.84 0.0082 86.58 10.63 2.76 0.03

Financial2 17.66 0.0110 87.82 10.11 1.88 0.18

rsrch_0 92.56 0.4570 67.71 25.35 6.94 0.00

src_20 89.81 0.4486 70.12 23.06 6.83 0.00

stg_0 84.81 0.2978 73.33 18.62 9.05 0.00

loaded. As the hit ratio is the most well-known factor used to
evaluate a buffer management scheme, we evaluate the
hit ratios of the previously mentioned page-level buffer
management schemes with and without CAWR. CAWR tries
to preserve spatial locality so as to improve garbage collection
efficiency. So, we adopt the total number of cleaning
operations (that is, the sum of the valid page migrations and
block erases) to evaluate the garbage collection efficiency.
Furthermore, the average response time, which covers both the
exploitation of multichannel architecture and the reduction
of garbage collection overhead, is used to estimate the
performance of the SSD. Finally, we calculate the coefficient of
variation among the total numbers of read, write, and erase
operations of each channel to analyze the problem of load
balance among channels.

2. Evaluation Results

A. Hit Ratio

In the first experiment, we compare the proposed page-level
CAWR with the conventional CCF-LRU in terms of hit ratio.
Experimental results are shown in Fig. 6. From the figure, we
observe that the proposed method almost achieves the same hit
ratios as the conventional method under different buffer sizes.
For the read dominant trace of Financial2, the hit ratio of the
conventional method is slightly higher than the proposed
method. The reason is as follows. CAWR must collect multiple
dirty pages for parallel eviction. However, under read-intensive
workloads, it needs to wait for a long time to collect enough
dirty pages. In this period of time, a large number of clean
pages have been replaced. As a result, the hit ratios of reads are
degraded.

B. Cleaning Operations

In the second experiment, we compare the proposed
method with the CCF-LRU that allocates channels in a
round-robin manner in terms of the number of reclaiming
operations. CCF-LRU evicts one page at a time, and the
subsequent pages are then written to different channels in a
round-robin manner. Figure 7 shows the normalized number
of valid page migrations of the proposed method, with
respect to the conventional one. As the buffer size increases,
the write requests are reduced, so the total number of valid
page migrations of garbage collection is also reduced for both
methods; here, the reduction of the proposed method is
greater than the conventional one. The proposed method
reduces page migration operations by 7% for a 1 MB buffer
and by 10% for a 16 MB buffer, on average, compared to the
conventional method with the same buffer size. For the

154 Ronghui Wang et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0055

Fig. 6. Hit ratio of buffer: (a) Financial1, (b) Financial2, (c)
rsrch_0, (d) src2_0, and (e) stg_0.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 MB 2 MB 4 MB 8 MB 16 MB

H
it

 r
at

io

Cache size

CCF-LRU
CAWR

(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 MB 2 MB 4 MB 8 MB 16 MB

H
it

 r
at

io

Cache size

(b)

CCF-LRU
CAWR

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 MB 2 MB 4 MB 8 MB 16 MB

H
it

 r
at

io

Cache size

(c)

CCF-LRU
CAWR

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 MB 2 MB 4 MB 8 MB 16 MB

H
it

 r
at

io

Cache size

(d)

CCF-LRU
CAWR

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 MB 2 MB 4 MB 8 MB 16 MB

H
it

 r
at

io

Cache size

(e)

CCF-LRU
CAWR

financial workloads with the random access pattern, the
difference is small because most writes only contain one page
and the reordering step does not have such a great effect. For
the workloads with more sequential writes, CAWR reduces
more valid page migrations, by 15% at most. There is a small
reduction in the number of erase operations in the proposed
method, by 5% at most; thus, the result is not illustrated as a
figure here.

Fig. 7. Normalized number of valid page migrations.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fin.1 Fin.2 rsrch_0 src2_0 stg_0

N
or

m
al

iz
ed

 n
um

be
r

of
 v

al
id

pa

ge
 m

ig
ra

ti
on

s

CCF-LRU (1 MB)
CAWR (1 MB)
CCF-LRU (16 MB)
CAWR (16 MB)

Fig. 8. Normalized average response time.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fin.1 Fin.2 rsrch_0 src2_0 stg_0

N
or

m
al

iz
ed

 a
vg

. r
es

po
ns

e
ti

m
e

CCF-LRU (1 MB)
CAWR (1 MB)
CCF-LRU (16 MB)
CAWR (16 MB)

C. Average Response Time

In the experiment, we compare the average response time of
the proposed method to that of the conventional CCF-LRU
policy with round-robin allocation of channels. Figure 8 shows
the normalized number of average response time, with respect
to the conventional method. The results show that the response
time of the proposed method is always lower than that of the
conventional method. The achieved reduction is 38% at most
for the Financial2 workload, and 26% on average. With the
cache size increased, the reduction varies more or less. This
improvement comes mainly from the multiple pages eviction,
which utilizes the I/O parallelism.

D. Load Balance

In the experiment, we collect the numbers of read, write, and
erase operations of each channel, calculating their coefficients
of variation to reflect whether the loads among channels are
balanced. The coefficient of variation represents the ratio of the
standard deviation to the mean, and it is a useful statistic for
comparing the degree of variation. In Table 4, the reads and the
writes not only include host reads and writes but also the
migrating reads and writes introduced by the internal garbage
collection process. Both the round-robin allocation policy and
the multi-eviction policy of the proposal achieve almost
balanced loads for writes and erases. For read operations, the
values are relatively larger but still acceptable.

ETRI Journal, Volume 37, Number 1, February 2015 Ronghui Wang et al. 155
http://dx.doi.org/10.4218/etrij.15.0114.0055

Table 4. Coefficients of variation of reads, writes, and erases.

Workloads Policies Reads Writes Erases

Round-robin 0.0095 0.0031 0.0033
Financial1

CAWR 0.0023 0.0045 0.0043

Round-robin 0.0210 0.0132 0.0466
Financial2

CAWR 0.0304 0.0035 0.0289

Round-robin 0.1263 0.0006 0.0148
rsrch_0

CAWR 0.1272 0.0016 0.0060

Round-robin 0.0974 0.0051 0.0109
src2_0

CAWR 0.0980 0.0046 0.0350

Round-robin 0.0315 0.0008 0.0032
stg_0

CAWR 0.0316 0.0026 0.0041

Fig. 9. Normalized average response time of CAVE and CAWR.

0

0.2

0.4

0.6

0.8

1.0

Fin.1 Fin.2 rsrch_0 src2_0 stg_0

N
or

m
al

iz
ed

 a
vg

. r
es

po
ns

e
ti

m
e

CAVE (1 MB)
CAWR (1 MB)
CAVE (16 MB)
CAWR (16 MB)

E. Comparison with CAVE

We also make a comparison of the proposed method with
the CCF-LRU policy combined with CAVE. A small
modification of CAVE is made to support a read-write buffer;
when there are enough cold dirty pages for all channels, CAVE
evicts. Since CCF-LRU does not detect the write pattern,
CAVE allocates channels to each page in a round-robin manner,
no matter whether the pages are consecutive or not. The
conventional CCF-LRU policy mentioned in experiment B
also uses this round-robin allocation manner, so the
conventional CCF-LRU and this page-level CAVE have
similar data distributions and garbage-collecting activities. The
experimental results confirm that they achieve a similar
number of valid-page-migration and erase operations.
Therefore, the difference in garbage-collection overhead
between CAVE and CAWR is similar to that between the
conventional CCF-LRU and CAWR, which has been
discussed in experiment B. The proposed method behaves
better in terms of endurance, and it reduces page migration
operations by 10% for a 16 MB buffer, on average.

The proposed method and CAVE both utilize the parallelism
among channels. Figure 9 shows the normalized number of

average response time of CAWR with respect to CAVE. The
response time is similar except for the financial workloads. The
reason is complicated. Firstly, arranging sequential write pages
into the same block reduces the clean cost but may increase the
latency of reads, since read pages must be fetched from the
block one by one; thus, sequential read cannot take advantage
of the parallelism among channels. Second, the arrival intensity
of IO requests is another factor, because a higher intensity
means that the response time is more sensitive to the garbage-
collection overhead. The financial workloads have fewer
sequential reads and higher arrival intensity; thus, the proposed
method behaves better than CAVE, because the proposed
method optimizes the garbage collection remarkably, while the
read performance is unlikely to be impaired by the limited
parallelism. For the other workloads, although the proposed
CAWR reduces more valid page migrations, the proposed
method ties CAVE for the increased time of sequential reads
and relative lower arrival intensity. And, for the rsrch_0
workload, CAVE even slightly outperforms the proposed
mechanism by 0.09% for a 1 MB buffer and 0.75% for a
16 MB buffer, for the increased read time.

VI. Conclusion

In this paper, we proposed a channel-aware write reordering
(CAWR) mechanism, which reorganizes the evicting page
sequence and evicts multiple victims to increase I/O
parallelism, as well as preserving the spatial locality. CAWR
detects the consecutive page at the end of the buffer; thus, it can
be well applied even though the buffer replacement policies do
not address the page pattern. The experimental results show
that even though the CAWR collects and evicts more victims
each time than the conventional method, this cannot critically
affect the hit ratio of a buffer. By reordering the page sequence,
the number of reclaiming operations is reduced, and by
multiple-pages eviction, the performance is improved for SSDs
with independent multichannel architectures.

Keeping a sequential write pattern increases the time of a
sequential read; however, we think that it is not a good idea to
sacrifice endurance for the sake of performance. Other existing
methods, such as redundancy encoding, duplication, and cost-
aware buffer replacement, have been earmarked by us for future
work in the hope that we will be able to combine these with our
scheme in an attempt to compensate the read performance.

References

[1] L.-P. Chang, Y.-H. Huang, and C.-Y. Wen, “On the Management

of Multichannel Architectures of Solid-State Disks,” IEEE Symp.

Embedded Syst. Real-Time Multimedia, Taipei, Taiwan, Oct. 13–

156 Ronghui Wang et al. ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0114.0055

14, 2011, pp. 37–45.

[2] S.K. Park et al., “CAVE: Channel-Aware Buffer Management

Scheme for Solid State Disk,” ACM Symp. Appl. Comput.,

Taichung, Taiwan, Mar. 21–25, 2011, pp. 346–353.

[3] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation

Layer Employing Demand-Based Selective Caching of Page-

Level Address Mappings,” ACM Int. Conf. Archit. Support

Programming Languages Operating Syst., Washington, DC,

USA, Mar. 7–11, 2009, pp. 229–240.

[4] Y. Hu et al., “Achieving Page-Mapping FTL Performance at

Block-Mapping FTL Cost by Hiding Address Translation,” IEEE

Symp. Mass Storage Syst. Technol., Incline Village, NV, USA,

May 3–7, 2010, pp. 1–12.

[5] H. Jo et al., “FAB: Flash-Aware Buffer Management Policy for

Portable Media Players,” IEEE Trans. Consum. Electron., vol. 52,

no. 2 , May 2006, pp. 485–493.

[6] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for

Improving Random Writes in Flash Storage,” USENIX Conf. File

Storage Technol., San Jose, CA, USA, Feb. 26–29, 2008, pp.

239–252.

[7] S. Kang et al., “Performance Trade-Offs in Using NVRAM Write

Buffer for Flash Memory-Based Storage Devices,” IEEE Trans.

Comput., vol. 58, no. 6, June 2009, pp. 744–758.

[8] S.-Y. Park et al., “CFLRU: A Replacement Algorithm for Flash

Memory,” IEEE Int. Conf. Compilers Archit. Synthesis Embeded

Syst., Seoul, Rep. of Korea, Oct. 23–25, 2006, pp. 234–241.

[9] H. Jung et al., “LRU-WSR: Integration of LRU and Writes

Sequence Reordering for Flash Memory,” IEEE Trans. Consum.

Electron., vol. 54, no. 3, Aug. 2008, pp. 1215–1223.

[10] Z. Li et al., “CCF-LRU: A New Buffer Replacement Algorithm

for Flash Memory,” IEEE Trans. Consum. Electron., vol. 55, no.

3, Aug. 2009, pp. 1351–1359.

[11] D. Seo and D. Shin, “Recently-Evicted-First Buffer Replacement

Policy for Flash Storage Devices,” IEEE Trans. Consum.

Electron., vol. 54, no. 3, Aug. 2008, pp. 1228–1235.

[12] Y. Kim et al., “FlashSim: A Simulator for NAND Flash-Based

Solid-State Drives,” Int. Conf. Adv. Syst. Simulation, Porto,

Portugal, Sept. 20–25, 2009, pp. 125–131.

[13] A. Birrell et al., “A Design for High-Performance Flash Disks,”

Microsoft Research, Silicon Valley, CA, USA, Tech. Rep. MSR-

TR-2005–176, Dec. 2005.

[14] SPC, Storage Traces form Storage Performance Council, SPC,

2009. Accessed May 22, 2013. http://traces.cs.umass.edu/

[15] SNIA, Block Traces from SNIA IOTTA Repository, SNIA, 2009.

Accessed May 22, 2013. http://iotta.snia.org/traces/list/BlockIO

[16] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-

Loading: Practical Power Management for Enterprise Storage,”

USENIX Conf. File Storage Technol., San Jose, CA, Feb. 26–29,

2008, pp. 253–267.

Ronghui Wang received her BS and MS

degrees in computer science from the College of

Computer, National University of Defense

Technology (NUDT), Changsha, China, in 1999

and 2002, respectively. She is a senior engineer at

the State Key Laboratory of Astronautic

Dynamics, Xi’an, China, and she is currently

enrolled in the NUDT’s PhD program in electronic science. Her research

interests include software/hardware co-design, mass storage architecture,

and solid-state storage systems.

Zhiguang Chen received his BS degree in

computer science and technology from the

Harbin Institute of Technology, China, in 2007.

He achieved his MS and PhD degrees in

computer science from the National University

of Defense Technology (NUDT), Changsha,

China, in 2009 and 2013, respectively. Now, he

is an associate professor at the College of Computer, NUDT. His

current research interests include distributed file systems, network

storage, and solid-state storage systems.

Nong Xiao received his BS, MS, and PhD

degrees in computer science from the College of

Computer, National University of Defense

Technology (NUDT), Changsha, China.

Currently, he is a professor at the College of

Computer, NUDT. His current research interests

include large-scale storage systems, network

computing, and computer architecture.

Minxuan Zhang received his BS, MS and PhD

degrees in computer science from the College

of Computer, National University of Defense

Technology (NUDT), Changsha, China.

Currently, he is a professor at the College of

Computer, NUDT. His research interests include

high-performance microprocessor design, high-

performance parallel computing, and computer architecture.

Weihua Dong received his BS degree in

computer science from the College of

Computer, National University of Defense

Technology, Changsha, China, in 1999.

Currently, he is a senior engineer at the State

Key Laboratory of Astronautic Dynamics,

Xi’an, China. His research interests include

high-performance computing systems, software architecture, and

software engineering.

