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A typical solid-state drive contains several independent 
channels that can be operated in parallel. To exploit this 
channel-level parallelism, a variety of works proposed to 
split consecutive write sequences into small segments and 
schedule them to different channels. This scheme exploits 
the parallelism but breaks the spatial locality of write 
traffic; thus, it is able to significantly degrade the efficiency 
of garbage collection. This paper proposes a channel-
aware write reordering (CAWR) mechanism to schedule 
write requests to different channels more intelligently. The 
novel mechanism encapsulates correlated pages into a 
cluster beforehand. All pages belonging to a cluster are 
scheduled to the same channels to exploit spatial locality, 
while different clusters are scheduled to different channels 
to exploit the parallelism. As CAWR covers both garbage 
collection and I/O performance, it outperforms existing 
schemes significantly. Trace-driven simulation results 
demonstrate that the CAWR mechanism reduces the 
average response time by 26% on average and decreases 
the valid page copies by 10% on average, while achieving 
a similar hit ratio to that of existing mechanisms. 
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I. Introduction 

Due to the improved bandwidth and random I/O 
performance, NAND flash–based solid-state drives (SSDs) are 
replacing hard disk drives (HDDs) in high-end enterprise-scale 
storage systems and high-performance computing (HPC) 
environments. However, flash memory exhibits some 
peculiarities that are incompatible with existing software stacks. 
Accordingly, SSDs internally employ a flash translation layer 
(FTL) to hide the idiographic characteristic of flash memory 
and to mimic themselves as block devices. FTL provides an 
address mapping between the logical addresses used by the 
host and the physical addresses used in flash memory. Besides 
this, FTL internally issues extra read, write, or erase operations 
to efficiently manage the storage space, and the number of 
those extra operations depends both on the data access pattern 
from the upper layer and the algorithm adopted by the address 
mapping. 

As Fig. 1 shows, the modern SSD uses an on-disk buffer in-
between the host interface and the FTL. The buffer stores data 
from the host first and then writes the data to the NAND flash 
memory afterwards. The replacement policy employed by the 
write buffer should take both the write sequence and the FTL 
algorithm into account. Furthermore, as the SSD usually 
contains several independent channels, the replacement policy 
is also responsible for scheduling write requests among these 
channels to exploit parallelism. Most existing buffer 
replacement policies do not consider hardware parallelism, and 
their evicting sequence contains quite a number of consecutive 
pages even from a page-level buffer. When these buffer 
policies are applied to independent channels, directly 
scheduling the consecutive sequence to separate channels does 
help to exploit parallelism; however, this will increase the  
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Fig. 1. SSD overview: proposed CAWR is applied to the buffer 
inside the SSD. 
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overhead of garbage collection significantly, since scheduling a 
consecutive write sequence to multiple channels will break  
the spatial locality of write traffic. There are only two buffer 
policies designed for independent channels. Chang and others 
[1] proposed a gating buffer to collect requests and 
instantaneously flush a page to every channel in parallel, but 
they did not designate the write pattern. CAVE [2] is another 
buffer policy that makes use of a multiple eviction technique 
capable of maintaining the sequential pattern of a block-level 
buffer. However, its round-robin channel allocation manner 
may break the sequential order of the block; moreover, it 
cannot address the consecutive pages with page-level buffer 
replacement policies. 

This paper proposes a channel-aware write reordering 
(CAWR) mechanism to recognize the patterns of pages to be 
evicted from the buffer. In this work, the buffer is logically 
partitioned into two regions. The first region is managed by the 
buffer replacement policy in the traditional manner. Pages 
evicted from the first region are delivered to the second region. 
In this region, correlated pages are encapsulated into a cluster. 
When buffer replacement is required, the CAWR mechanism 
schedules a cluster to each channel, guaranteeing that all 
channels are operated in parallel. Furthermore, as all pages in a 
given cluster are correlated, scheduling the entire cluster to a 
given channel guarantees that the spatial locality of write  
traffic remains intact. In conclusion, the CAWR mechanism 
aggressively exploits the parallelism among channels and thus 
achieves a higher I/O performance. On the other hand, as 
correlated pages are scheduled to the same channel and even 
written to the same physical block, the overhead of garbage 
collection is significantly reduced. 

CAWR bridges the information gap between the buffer 
replacement policy and the hardware architecture. The existing 
multiple eviction techniques need the buffer to identify the 
page pattern; otherwise, the sequential order will be totally lost. 
However, if the working cache organizes the cached data into 

clusters, because of the possibility of mixing cold data and hot 
data inside a cluster, the cold pages will stay in the cache with 
the hot ones if they belong to the same cluster, causing a waste 
of cache space and a degradation of the hit ratio. In addition, 
page-level mapping FTLs remove the block merge, releasing 
the constraint of block borders; thus, the advantage of a cluster-
organized buffer to create larger sequential writes is lost. 
CAWR aims at small sequential pages naturally generated 
from the cache. It organizes the page clusters at the end of the 
buffer, only for the pages that have already been identified as 
cold data to be evicted; thus, the working cache region need 
only focus on the hit ratio and read-write asymmetry of the 
flash memory. 

We implement the CAWR with a page-level replacement 
policy and simulate it in a flash-based SSD simulator with 
realistic workloads. The experimental results show that CAWR 
does not critically affect the hit ratio of an on-disk buffer. By 
reordering the page sequence, the number of reclaiming 
operations is reduced, and by evicting multiple pages 
simultaneously, the performance is improved. Compared to the 
CAVE, with the same replacement policy, our method reduces 
the garbage collection overhead, and as a consequence of doing 
so, slightly improves the performance. 

II. Background 

NAND flash memory consists of a number of blocks, each 
of which consists of the same number of pages. There are three 
basic operations for a NAND flash memory: read, write 
(program), and erase. A block is a basic unit of erase operations, 
while a page is a basic unit of read and write operations. A 
write operation is much slower than a read, while an erase 
operation is even slower than a write. If a page has been written, 
it cannot be overwritten until the block that the page belongs  
to is erased; that is, the erase-before-write characteristic. 
Therefore, flash memory uses “out-of-place write” rather than 
“in-place write” in HDDs. Furthermore, the number of erasures 
that each block can survive is limited — 10,000 times for 
multi-level cell or 100,000 times for single-level cell flash 
memory. 

Flash storage devices internally employ an FTL to hide the 
characteristic of flash memory and emulate it as a block device. 
The most important function of the FTL is to maintain a 
mapping between the logical block addresses (LBAs) used by 
the host and the physical block and page addresses used in 
flash memory. This mapping can either be at the page level, 
block level, or hybrid level. Although, as far as we know, most 
current commercial SSD products employ the hybrid-mapping 
FTL schemes, these FTLs usually perform, arguably, more 
poorly than page-mapping FTLs. The only weakness of a 
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page-mapping FTL is that it consumes a prohibitively large 
RAM space to store the page-mapping information. With 
techniques for optimizing the huge demand on the RAM,  
such as DFTL [3] and HAT [4], page-mapping FTLs are a 
promising alternative to the hybrid schemes. Another basic 
function of an FTL is that it cleans blocks for reuse. This 
function is performed by a garbage collector, which recycles 
blocks after all the valid pages within them have been migrated 
elsewhere. Moreover, for the limited program-erase cycle 
count, an FTL adopts a wear-leveling technique to maximize 
the endurance of the flash memory, keeping as many writable 
blocks as possible. 

Modern NAND flash–based SSDs consist of multiple 
channels, where each channel has multiple NAND flash 
memory chips. The multiple channels of SSDs can be 
organized as synchronized channels or independent channels. 
Synchronized channels have all channels perform the same 
flash command at the same flash address. The pages and 
blocks of the same flash addresses in all channels form a super 
page and a super block, which scales up the unit sizes of read-
write and erase by the total number of channels. It provides 
high I/O throughput but dramatically increases the read-
modify-write overhead [1] and garbage collection overhead [2]. 
Independent channels carry out flash operations on their own 
data, commands, and addresses. It is more flexible, but the 
problem of how to maintain high channel utilization is a big 
design obstacle. An FTL should take the hardware architecture 
into account for independent channels. Our method is designed 
for independent channels too, exploiting the channel-level 
parallelism from the upper layer. 

In addition to the array of flash chips and the FTL, SSD has 
an on-disk buffer. The buffer holds the metadata of the FTL 
and also works as a cache to improve performance. The 
replacement policy employed by the buffer should take both 
the characteristics of the flash memory and the FTL algorithm 
into account. Since currently commercial SSDs employ a 
hybrid-mapping FTL, some buffer replacement policies try to 
decrease the number of merge operations by clustering pages 
in the same block and destaging them at the same time. With a 
page-mapping FTL, since the page can be placed anywhere, 
buffer management policies need not consider the block 
borders.  

III. Related Work 

According to the replacement granularity, the flash-aware 
buffer replacement policies can be classified into two types: 
page level and block level. The Least Recently Used (LRU) 
policy is the basis for most of these policies. Block-level 
replacement policies organize the buffered data in the unit of 

block. When a replacement is needed, they replace data of a 
whole block or several pages that belong to one block. For 
example, FAB [5] maintains an LRU block list: the pages that 
belong to the same physical block of flash memory are 
grouped together, and a group is moved to the Most Recently 
Used (MRU) position of the list when the group reads, updates, 
or inserts a page. FAB selects the block with the most number 
of pages to produce larger sequential writes. BPLRU [6] targets 
to random write patterns and uses the page padding technique 
to change the fragmented write patterns to sequential ones. 
CLC [7] selects a cold large cluster as a victim to increase   
the hit ratio. Block-level replacement policies produce large 
sequential writes; however, it is hard for them to treat read and 
write operations differently; thus, some of them work only as a 
write buffer and simply redirect the non-cached read requests 
to the beneath layer. 

Page-level replacement policies replace data in the unit    
of page. Most existing page-level algorithms (for example, 
CFLRU [8] and LRU-WSR [9]) focus on the asymmetric 
latencies between read and write in flash-based storage systems, 
trying to give a higher priority towards evicting clean pages 
rather than dirty pages (that is, a clean-first policy). CFLRU 
and LRU-WSR do not consider the access frequencies of data. 
They merely keep cold dirty data and evict hot clean data; thus, 
they may degrade the overall I/O performance. CCF-LRU [10] 
further refines the idea of LRU-WSR by distinguishing cold-
clean from hot-clean pages. Cold pages are distinguished from 
hot pages using the second chance algorithm. They define four 
types of eviction costs: cold-clean, cold-dirty, hot-clean, and 
hot-dirty, with increasing priority. The aforementioned page-
level policies do not address the write patterns. REF [11] 
chooses a page having the same logical block number that is 
recently evicted as a victim for reducing a block merge number 
and associativity; however, it does not distinguish between the 
clean and dirty states of pages. 

Existing buffer replacement policies do not consider the 
parallelism exhibited by the multichannel architecture of 
modern SSDs. Chang and others [1] proposed a gating buffer 
to collect requests and instantaneously flush a page to every 
channel in parallel. CAVE [2] shares the same idea but is more 
specific. CAVE is claimed to work well with block-level and 
page-level replacement policies: it only considers the eviction 
rate, while replacement policies only focus on the eviction 
order. Figure 2 gives examples of CAVE cooperating with 
block-level and page-level policies. There are some problems 
with CAVE: (a) when CAVE cooperates with block-level 
replacement policies, since it uses a round-robin scheme for 
allocating the channel number to a block, sequential pages 
belonging to a given block will be written to different channels; 
(b) when CAVE cooperates with page-level replacement  
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Fig. 2. Examples of CAVE with buffer replacement policies: (a) block-level + CAVE and (b) page-level + CAVE. 
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policies, it does not consider the write pattern of the evicted 
pages and thus simply flushes multiple victims to different 
parallel units. However, by recording the evicted page 
sequences of some real-world workload traces, we find that 
even page-level replacement policies flush quite a number of 
sequential writes, on purpose or unconsciously. Striping these 
sequential writes also breaks the spatial locality; and (c) CAVE 
is only applied to a write buffer involving no caching for read 
operations. Our proposed method applies itself well to a read-
write buffer and also solves the first two problems of CAVE. 

IV. CAWR 

1. Motivation and Two-Region Buffer  

As we have mentioned, existing buffer replacement policies 
do not exploit I/O parallelism, while gating buffer [1] and 
CAVE [2] only consider the eviction rate. CAVE can partially 
keep the sequential write pattern for block-level replacement 
policies, but for page-level policies the pattern information is 
totally lost. However, from some experiments of real-world 
traces, we find that the pages flushed from the page-level buffer 
can still be clustered, as can be the case with the original access 
sequence. To evict multiple victims for increasing I/O 
parallelism and to keep the spatial locality of sequential writes 
inside a physical block, we propose the CAWR to bridge the 
information gap between the buffer management policy and 
the multichannel architecture. 

We logically partition the buffer into two parts, as Fig. 3 
shows. The first part is the working region that is managed by a 
traditional cache replacement policy. The other is the 
reordering region that is managed by CAWR. The sizes of the 
two regions are dynamically changed, and only pages to be  

 

Fig. 3. Structure of CAWR buffer. 
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replaced are logically partitioned into the reordering region. The 
working region can adopt both block-level and page-level 
replacement policies, obtaining the block-level CAWR and 
page-level CAWR. For a page-level CAWR, cold pages are 
retired from the working region, and then they enter into the 
reordering region instead of being directly flushed into the flash 
memory. In the reordering region, CAWR clusters correlated 
pages for each channel, guaranteeing the spatial locality to write 
traffic. Then when a buffer replacement is required, CAWR 
evicts pages from each cluster to each channel simultaneously, 
guaranteeing that all channels are operated in parallel. 

When the working region employs a block-level policy, the 
underlying FTL layer must apply a block-mapping or hybrid-
mapping FTL. The block-level CAWR should keep the block 
borders and works almost like CAVE; multiple blocks are 
destaged from the working region and enter into the reordering 
region for multiple pages eviction. During the entering, 
cleaning pages in those blocks are first evicted, so only dirty 
pages remain in the channel clusters. Since the pages already 
have been clustered in the working region, there is no need to 
perform the reordering step. Because when a block enters into 
one cluster the channel number has already been assigned and 
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firmly fixed; thus, CAWR solves the problem that is caused  
by round-robin allocating the channel number to a block. 
However, because of the relatively lower hit ratio of block-
level buffer policies, page-level policies are more preferable for 
CAWR. The following discussions mostly focus on the page-
level policy.  

2. Write-Reordering and Multi-eviction Scheme 

In the reordering region, CAWR uses multiple cold dirty lists 
(CDLs), which will be illustrated in the next subsection to store 
the pages to be flushed to flash memories. The number of lists 
is equal to the number of channels in the SSD. When a page is 
evicted by the working region, it is arranged into one of the 
CDLs in the reordering region according to the replacement 
sequence. Algorithm 1 describes how to arrange the pages, and 
Fig. 4 gives an example of a multiple-pages eviction of a page-
level CAWR. Notice that this page-level CAWR is not 
designed for a block-mapping or hybrid-mapping FTL, it only 
organizes the cold dirty pages into page clusters without 
designating the block borders. Otherwise, if the underlying 
FTL applies a block or hybrid mapping, then the isSequence 
condition (line 6 in Algorithm 1) to arrange pages should be 
changed to a new condition that judges whether two pages 
belong to the same block.  

In Algorithm 1, the dirty page at the LRU position of the 
working list first tries to append to a nonempty CDL (the first 
FOR loop). If the page is not consecutive to any pages in all 
CDLs, then this tentative step fails, and the page then tries to 
append to an empty CDL (the second FOR loop). We also 
define a maximum length for each CDL, avoiding a long 
sequence of consecutive pages, which may result in a worse 
cache hit ratio and failure of multiple eviction. The length of 
each CDL can be between 4 and 16, because while we 
examine the real-world workloads, most of the write requests 
are less than four-times the page size (4 kB × 4 kB = 16 kB), 
and it is seldom that writes are greater than sixteen-times the 
page size (16 kB × 4 kB = 64 kB). Algorithm 1 only describes 
how to move a cold dirty page, and when to move is described 
in the next subsection by combining with the victim selection 
algorithm of the buffer. 

In Fig. 4, where it is assumed that there are four channels in 
the SSD, the evicting pages are moved from the working LRU 
list to CDLs on a one-by-one basis in accordance with 
Algorithm 1. When we need to move the page 1,002, since it is 
not consecutive to any pages in all other CDLs and each CDL 
has at least a page, CAWR flushes the LRU pages (4, 309, 55, 
and 100) of each list. After flushing, there is an empty list of 
CDLs and the page 1,002 can then be moved in. Since the next 
page of 7 is the consecutive page to 6, it can be moved into the  

Algorithm 1. to CDLs 

1: WL: working LRU list 
2: item: the LRU dirty pate in WL 
3: CDLs: cold dirty LRU list organized into channels 
4: moved = false; 
5: for (i = 0; i < ChannelSize; i + +) do 
6:  if ((CDLs[i] is not empty) & (CDLs[i] is not full) 
    & (isSequence(item, CDLs[i]))) then 
7:      remove item from WL; 
8:      move item into MRU position in CDLs[i]; 
9:      moved = true; 

10:      break; 
11:  end if 
12: end for 
13: if (!moved) then 
14:  for (i = 0; i < ChannelSize; i + +) do 
15:     if (CDLs[i] is empty) then 
16:       remove item from WL; 
17:       move item into MRU position in CDLs[i]; 
18:       moved = true; 
19:       break; 
20:     end if 
21:  end for 
22: end if 
23: return moved; 

 

 

Fig. 4. Example of flushing pages of CAWR. 
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very list that contains page 6. As there is no place for the page of 
20, CAWR again flushes the pages of 5, 310, 56, and 1,002. We 
can see that by flushing pages in each page cluster, CAWR 
changes the pattern of multiple evicted pages for a parallel write. 

3. Clean-First Page-Level CAWR 

In this subsection, we illustrate the overall design of a page- 
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Fig. 5. Structure of page-level CAWR. 
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level CAWR, which cooperates with the extended CCF-LRU 
page-level working region. The working region organizes the 
buffered data in a list of pages, where each page contains a 
clean/dirty bit and a hot/cold bit. Figure 5 shows the structure, 
in which WL represents the working list of the working region. 
There are several CDLs and a cold clean list (CCL) in the 
reordering region, where the number of CDLs (n) is equal to 
the number of channels. As we have mentioned in the previous 
subsection, a maximum length for each CDL is defined; for 
example, four, and if the device has four channels, then the 
maximum size of a CDL is 4 kB × 4 kB × 4 kB = 64 kB. The 
sizes of the WL, CCL, and CDLs are dynamically changed, the 
sum of which is equal to the size of the cache. 

When a replacement is needed, the victim selection starts, as 
illustrated in Algorithm 2. The algorithm first evicts the LRU 
page in the CCL (lines 5–6), and since a clean page can be 
directly removed from the buffer, only one victim is selected 
from the list at a time. If the clean list is empty, then the CDLs 
are checked, trying to evict multiple pages whose number is 
equal to that of the number of channels at any given time (lines 
9–12). If the clean list and at least one dirty list are empty, then 
the mixed working LRU list is scanned from the LRU position, 
to move some cold pages to the cold lists (lines 14–29). The 
dirty page in the working LRU list is given a second chance; a 
clean page is directly moved to the CCL, while a dirty page is 
marked from “hot” to “cold” in the first scan and will be 
moved to the CDLs in the next scan. The moving between the 
working list and the cold lists ends when the CDLs cannot be 
moved in (none of the dirty lists are empty and the current cold 
dirty page is not consecutive to the pages in the lists). After the 
moving step, the selection algorithm is called again.  

 

Algorithm 2. Victim selection 

1: WL: working LRU list 
2: CCL: cold clean LRU list 
3: CDLs: cold dirty LRU list organized into channels 
4: while (True) do 

5:  if (CCL is not empty) then 
6:     return the LRU pate in CCL; 
7:  else 
8:     if (All CDLs are not empty) then 
9:       for (i = 0; i < ChannelSize; i + +) do 

10:          victims[i] = the LRU page in CDLs[i]; 
11:       end for 
12:       return victims; 
13:     else 
14:      item = the LRU page in WL; 
15:      while (item is Dirty) do 
16:         if (cold-flag of item is set) then 
17:           if (!toCDLs(item)) then 
18:              break; 
19:           end if 
20:         else 
21:           set cold-flag of item; 
22:           move item to MRU position in WL; 
23:         end if 
24:         item = the LRU page in WL; 
25:      end while  
26:      if (item is not dirty) then 
27:         remove item from WL; 
28:         move item into MRU position in CCL; 
29:      end if 
30:    end if 
31:  end if 
32: end while 

 

Table 1. Comparison of buffer management policies. 

Technique R/W asymmetry Write pattern Parallelism

Block-level buffer No Yes No 

CFLRU, LRU-WSR, 
CCF-LRU 

Yes No No 

REF No Yes No 

Gating buffer, CAVE No No Yes 

CAVE + block-level No Yes (partial) Yes 

CAVE + page-level No No Yes 

CAWR (proposed) Yes Yes Yes 

 

 
4. Comparison of Buffer Management Policies 

The CAWR clusters the dirty pages to be evicted into 
multiple lists. Each list, in turn, corresponds to a channel of the 
SSD. The data to be written to flash memories is only flushed 
from the reordering region, such flushing only occurring when 
every channel has at least one outstanding page write. The 
CAWR flushes the cold clean page first. It then clusters the 
cold dirty pages and flushes them in multiples during each 
eviction. Table 1 compares it with previous techniques. 
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V. Performance Evaluation 

1. Evaluation Setup 

To evaluate the proposed mechanism, we use FlashSim [12] 
as our simulation framework, implementing an on-disk buffer 
with our page-level CAWR and an ideal page-level address 
mapping FTL that extends the FTL described in [13]. To allow 
parallel operations among independent channels, our FTL 
keeps a write point for each channel. The multiple evicted 
pages from the buffer are allocated to multiple write points   
so that they can be operated in independent channels 
simultaneously. The 1-channel garbage collection [2] is 
triggered when the number of free blocks in a channel gets to a 
certain threshold.  

Flash memory chips are organized in four channels. Table 2 
presents the parameters of the simulated flash memory. Two 
financial workloads provided by Storage Performance Council 
[14] and three MSR-series workloads [15] collected from 
different production servers [16] in Microsoft's data centers are 
employed as realistic I/O intensive traces. Financial workloads 
represent the random access pattern; and the others represent 
the sequential pattern. The size of the simulated device is fixed 
and referenced LBAs larger than this size are filtered. Table 3 
lists the characteristics of the workloads. 

An initial process is simulated to fill the device and warm up 
the FTL algorithm, writing all valid LBAs to the device. This 
process generates an aged SSD in which cleaning is more 
easily invoked. Statistics collection begins as the traces are  

 

Table 2. Parameters of simulated flash memory.  

Parameter Value 

Page read to register 60 µs 

Page program (write) from register 800 µs 

Block erase 1.5 ms 

Page size 4 kB 

 

Table 3. Characteristics of workload traces.  

Write size (%) 

 
Write 

(%) 
Average  
interval 4 kB 

4 kB 

–16 kB 

16 kB

–64 kB
> 64 kB

Financial1 76.84 0.0082 86.58 10.63 2.76 0.03 

Financial2 17.66 0.0110 87.82 10.11 1.88 0.18 

rsrch_0 92.56 0.4570 67.71 25.35 6.94 0.00 

src_20 89.81 0.4486 70.12 23.06 6.83 0.00 

stg_0 84.81 0.2978 73.33 18.62 9.05 0.00 

 

loaded. As the hit ratio is the most well-known factor used to 
evaluate a buffer management scheme, we evaluate the     
hit ratios of the previously mentioned page-level buffer 
management schemes with and without CAWR. CAWR tries 
to preserve spatial locality so as to improve garbage collection 
efficiency. So, we adopt the total number of cleaning 
operations (that is, the sum of the valid page migrations and 
block erases) to evaluate the garbage collection efficiency. 
Furthermore, the average response time, which covers both the 
exploitation of multichannel architecture and the reduction   
of garbage collection overhead, is used to estimate the 
performance of the SSD. Finally, we calculate the coefficient of 
variation among the total numbers of read, write, and erase 
operations of each channel to analyze the problem of load 
balance among channels. 

2. Evaluation Results 

A. Hit Ratio 

In the first experiment, we compare the proposed page-level 
CAWR with the conventional CCF-LRU in terms of hit ratio. 
Experimental results are shown in Fig. 6. From the figure, we 
observe that the proposed method almost achieves the same hit 
ratios as the conventional method under different buffer sizes. 
For the read dominant trace of Financial2, the hit ratio of the 
conventional method is slightly higher than the proposed 
method. The reason is as follows. CAWR must collect multiple 
dirty pages for parallel eviction. However, under read-intensive 
workloads, it needs to wait for a long time to collect enough 
dirty pages. In this period of time, a large number of clean 
pages have been replaced. As a result, the hit ratios of reads are 
degraded. 

B. Cleaning Operations 

In the second experiment, we compare the proposed 
method with the CCF-LRU that allocates channels in a 
round-robin manner in terms of the number of reclaiming 
operations. CCF-LRU evicts one page at a time, and the 
subsequent pages are then written to different channels in a 
round-robin manner. Figure 7 shows the normalized number 
of valid page migrations of the proposed method, with 
respect to the conventional one. As the buffer size increases, 
the write requests are reduced, so the total number of valid 
page migrations of garbage collection is also reduced for both 
methods; here, the reduction of the proposed method is 
greater than the conventional one. The proposed method 
reduces page migration operations by 7% for a 1 MB buffer 
and by 10% for a 16 MB buffer, on average, compared to the 
conventional method with the same buffer size. For the 
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Fig. 6. Hit ratio of buffer: (a) Financial1, (b) Financial2, (c) 
rsrch_0, (d) src2_0, and (e) stg_0. 
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financial workloads with the random access pattern, the 
difference is small because most writes only contain one page 
and the reordering step does not have such a great effect. For 
the workloads with more sequential writes, CAWR reduces 
more valid page migrations, by 15% at most. There is a small 
reduction in the number of erase operations in the proposed 
method, by 5% at most; thus, the result is not illustrated as a 
figure here. 

 

Fig. 7. Normalized number of valid page migrations. 
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Fig. 8. Normalized average response time. 
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C. Average Response Time 

In the experiment, we compare the average response time of 
the proposed method to that of the conventional CCF-LRU 
policy with round-robin allocation of channels. Figure 8 shows 
the normalized number of average response time, with respect 
to the conventional method. The results show that the response 
time of the proposed method is always lower than that of the 
conventional method. The achieved reduction is 38% at most 
for the Financial2 workload, and 26% on average. With the 
cache size increased, the reduction varies more or less. This 
improvement comes mainly from the multiple pages eviction, 
which utilizes the I/O parallelism. 

D. Load Balance 

In the experiment, we collect the numbers of read, write, and 
erase operations of each channel, calculating their coefficients 
of variation to reflect whether the loads among channels are 
balanced. The coefficient of variation represents the ratio of the 
standard deviation to the mean, and it is a useful statistic for 
comparing the degree of variation. In Table 4, the reads and the 
writes not only include host reads and writes but also the 
migrating reads and writes introduced by the internal garbage 
collection process. Both the round-robin allocation policy and 
the multi-eviction policy of the proposal achieve almost 
balanced loads for writes and erases. For read operations, the 
values are relatively larger but still acceptable. 
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Table 4. Coefficients of variation of reads, writes, and erases. 

Workloads Policies Reads Writes Erases 

Round-robin 0.0095 0.0031 0.0033 
Financial1 

CAWR 0.0023 0.0045 0.0043 

Round-robin 0.0210 0.0132 0.0466 
Financial2 

CAWR 0.0304 0.0035 0.0289 

Round-robin 0.1263 0.0006 0.0148 
rsrch_0 

CAWR 0.1272 0.0016 0.0060 

Round-robin 0.0974 0.0051 0.0109 
src2_0 

CAWR 0.0980 0.0046 0.0350 

Round-robin 0.0315 0.0008 0.0032 
stg_0 

CAWR 0.0316 0.0026 0.0041 

  

 

 

Fig. 9. Normalized average response time of CAVE and CAWR.
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E. Comparison with CAVE 

We also make a comparison of the proposed method with 
the CCF-LRU policy combined with CAVE. A small 
modification of CAVE is made to support a read-write buffer; 
when there are enough cold dirty pages for all channels, CAVE 
evicts. Since CCF-LRU does not detect the write pattern, 
CAVE allocates channels to each page in a round-robin manner, 
no matter whether the pages are consecutive or not. The 
conventional CCF-LRU policy mentioned in experiment B 
also uses this round-robin allocation manner, so the 
conventional CCF-LRU and this page-level CAVE have 
similar data distributions and garbage-collecting activities. The 
experimental results confirm that they achieve a similar 
number of valid-page-migration and erase operations. 
Therefore, the difference in garbage-collection overhead 
between CAVE and CAWR is similar to that between the 
conventional CCF-LRU and CAWR, which has been 
discussed in experiment B. The proposed method behaves 
better in terms of endurance, and it reduces page migration 
operations by 10% for a 16 MB buffer, on average.  

The proposed method and CAVE both utilize the parallelism 
among channels. Figure 9 shows the normalized number of 

average response time of CAWR with respect to CAVE. The 
response time is similar except for the financial workloads. The 
reason is complicated. Firstly, arranging sequential write pages 
into the same block reduces the clean cost but may increase the 
latency of reads, since read pages must be fetched from the 
block one by one; thus, sequential read cannot take advantage 
of the parallelism among channels. Second, the arrival intensity 
of IO requests is another factor, because a higher intensity 
means that the response time is more sensitive to the garbage- 
collection overhead. The financial workloads have fewer 
sequential reads and higher arrival intensity; thus, the proposed 
method behaves better than CAVE, because the proposed 
method optimizes the garbage collection remarkably, while the 
read performance is unlikely to be impaired by the limited 
parallelism. For the other workloads, although the proposed 
CAWR reduces more valid page migrations, the proposed 
method ties CAVE for the increased time of sequential reads 
and relative lower arrival intensity. And, for the rsrch_0 
workload, CAVE even slightly outperforms the proposed 
mechanism by 0.09% for a 1 MB buffer and 0.75% for a    
16 MB buffer, for the increased read time. 

VI. Conclusion 

In this paper, we proposed a channel-aware write reordering 
(CAWR) mechanism, which reorganizes the evicting page 
sequence and evicts multiple victims to increase I/O 
parallelism, as well as preserving the spatial locality. CAWR 
detects the consecutive page at the end of the buffer; thus, it can 
be well applied even though the buffer replacement policies do 
not address the page pattern. The experimental results show 
that even though the CAWR collects and evicts more victims 
each time than the conventional method, this cannot critically 
affect the hit ratio of a buffer. By reordering the page sequence, 
the number of reclaiming operations is reduced, and by 
multiple-pages eviction, the performance is improved for SSDs 
with independent multichannel architectures. 

Keeping a sequential write pattern increases the time of a 
sequential read; however, we think that it is not a good idea to 
sacrifice endurance for the sake of performance. Other existing 
methods, such as redundancy encoding, duplication, and cost-
aware buffer replacement, have been earmarked by us for future 
work in the hope that we will be able to combine these with our 
scheme in an attempt to compensate the read performance. 
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