DOI QR코드

DOI QR Code

LTRE: Lightweight Traffic Redundancy Elimination in Software-Defined Wireless Mesh Networks

소프트웨어 정의 무선 메쉬 네트워크에서의 경량화된 중복 제거 기법

  • 박광우 (삼성전자 무선사업부) ;
  • 김원태 (LG전자 B2B솔루션센터) ;
  • 김준우 (고려대학교 전기전자공학부) ;
  • 백상헌 (고려대학교 전기전자공학부)
  • Received : 2017.04.10
  • Accepted : 2017.06.12
  • Published : 2017.09.15

Abstract

Wireless mesh network (WMN) is a promising technology for building a cost-effective and easily-deployed wireless networking infrastructure. To efficiently utilize limited radio resources in WMNs, packet transmissions (particularly, redundant packet transmissions) should be carefully managed. We therefore propose a lightweight traffic redundancy elimination (LTRE) scheme to reduce redundant packet transmissions in software-defined wireless mesh networks (SD-WMNs). In LTRE, the controller determines the optimal path of each packet to maximize the amount of traffic reduction. In addition, LTRE employs three novel techniques: 1) machine learning (ML)-based information request, 2) ID-based source routing, and 3) popularity-aware cache update. Simulation results show that LTRE can significantly reduce the traffic overhead by 18.34% to 48.89%.

낮은 비용으로 무선 네트워킹 인프라를 구축할 수 있는 무선 메쉬 네트워크에서는 제한된 무선 자원을 효율적으로 이용하기 위해 패킷 전송(특히, 불필요하게 중복되는 패킷 전송)을 신중하게 처리해야 한다. 본 논문에서는 컨트롤러를 통한 중앙 집중식의 관리가 가능한 소프트웨어 정의 네트워킹 기반의 무선 메쉬 네트워크에서 불필요하게 중복 전송되는 데이터의 양을 감소시키기 위해 경량화된 중복 제거기법을 제안한다. 제안하는 중복 제거 기법은 감소되는 트래픽 양을 극대화하기 위해 컨트롤러가 1) 기계학습 기반의 정보 요청, 2) ID기반의 소스 라우팅, 3) 인기도 기반의 캐쉬 업데이트를 통해 중복 제거 효과를 극대화시킬 수 있는 최적의 경로를 결정한다. 시뮬레이션 결과는 제안하는 기법을 통해 전체 트래픽 부하를 18.34%-48.89% 만큼 감소시킬 수 있음을 보여준다.

Keywords

Acknowledgement

Supported by : 정보통신기술진흥센터

References

  1. W. Kim, G. Park, S. Pack, and C. Kang, "Lightweight Traffic Redundancy Elimination in Software-Defined Wireless Mesh Networks," Proc. IEEE GCCE 2014, Tokyo, Japan, October 2014.
  2. V. Gabale, B. Raman, P. Dutta, and S. Kalyanraman, "A Classification Framework for Scheduling Algorithms inWireless Mesh Networks," IEEE Communications Surveys & Tutorials, Vol. 15, No. 1, pp. 192-222, 1st Quarter 2013.
  3. H. Li, Y. Cheng, C. Zhou, and W. Zhuang, "Routing Metrics for Minimizing End-to-End Delay in Multiradio Multichannel Wireless Networks," IEEE Transactions on Parallel and Distributed Systems, Vol. 24, No. 11, pp. 2293-2303, Nov. 2013. https://doi.org/10.1109/TPDS.2012.327
  4. Y. Zhang and N. Ansari, "On Protocol-Independent Data Redundancy Elimination," IEEE Communications Surveys & Tutorials, Vol. 16, No. 1, pp. 455-472, 1st Quarter 2014. https://doi.org/10.1109/SURV.2013.052213.00186
  5. P. Dely, A. Kassler, and N. Bayer, "OpenFlow for Wireless Mesh Networks," Proc. IEEE ICCCN 2011, Hawaii, USA, Jul. 2011.
  6. A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, "Wireless Mesh Software Defined Networks (wmSDN)," Proc. IEEE WiMob 2013, Lyon, France, Oct. 2013.
  7. F. Yang, V. Gondi, J. O. Hallstrom, K.-C. Wang, and G. Eidson, "OpenFlow-based Load Balancing for Wireless Mesh Infrastructure," Proc. IEEE CCNC 2014, Las Vegas, USA, Jan. 2014.
  8. H. Huang, P. Li, S. Guo, and W. Zhuang, "Software-Defined Wireless Mesh Networks: Architecture and Traffic Orchestration," IEEE Network, Vol. 29, No. 4, pp. 24-30, Jul.-Aug. 2015. https://doi.org/10.1109/MNET.2015.7166187
  9. S. Fdida, T. Korakis, H. Niavis, S. Salsano, and G. Siracusano, "The EXPRESS SDN Experiment in the OpenLab Large Scale Shared Experimental Facility," Proc. IEEE MoNeTeC 2014, Moscow, Russia, Oct. 2014.
  10. A. Anand, V. Sekar, and A. Akella, "SmartRE: An Architecture for Coordinated Network-wide Redundancy Elimination," Proc. ACM SIGCOMM 2009, Barcelona, Spain, Aug. 2009.
  11. Y. Cui, S. Xiao, C. Liao, I. Stojmenovic, and M. Li, "Data Centers as Software Defined Networks: Traffic Redundancy Elimination with Wireless Cards at routers," IEEE Journal of Selected Areas in Communications, Vol. 31, No. 12, pp. 2658-2672, Dec. 2013. https://doi.org/10.1109/JSAC.2013.131207
  12. C. Lumezanu, K. Guo, N. Spring, and B. Bhattacharjee, "The Effect of Packet Loss on Redundancy Elimination in Cellular Wireless Networks," Proc. ACM IMC 2010, Melbourne, Australia, Nov. 2010.
  13. E. Zohar, I. Cidon, and O. O. Mokryn, "Celleration: Loss-Resilient Traffic Redundancy Elimination for Cellular Data," Proc. ACM HotMobile 2012, San Diego, USA, Feb. 2012.
  14. Z. Zhuang and R. Sivakumar, "Wireless Memory: Eliminating Communication Redundancy in Wi-Fi Networks," Proc. IEEE WoWMoM 2011, Lucca, Italy, Jun. 2011.
  15. G. Park, Y. Shim, I. Jang, S. Pack, and X. Shen, "OARE: Overhearing-Aided Redundancy Elimination in Multi-Rate WLANs," IEEE Transactions on Vehicular Technology, Vol. 65, No. 5, pp. 3547-3558, May 2016. https://doi.org/10.1109/TVT.2015.2438822
  16. C.-C. Chang and C.-J. Lin, "LIBSVM: A Library for Support Vector Machines," ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, pp. 1-27, Apr. 2011.