• Title/Summary/Keyword: tradeoff

Search Result 391, Processing Time 0.026 seconds

A Comprehensive Cash Management Model for Construction Projects Using Ant Colony Optimization

  • Mohamed Abdel-Raheem;Maged E. Georgy;Moheeb Ibrahim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.243-251
    • /
    • 2013
  • Cash management is a major concern for all contractors in the construction industry. It is arguable that cash is the most critical resource of all. A contractor needs to secure sufficient funds to navigate the project to the end, while keeping an eye on maximizing profits along the way. Past research attempted to address such topic via developing models to tackle the time-cost tradeoff problem, cash flow forecasting, and cash flow management. Yet, little was done to integrate the three aspects of cash management together. This paper, as such, presents a comprehensive model that integrates the time-cost tradeoff problem, cash flow management, and cash flow forecasting. First, the model determines the project optimal completion time by considering the different alternative construction methods available for executing project activities. Second, it investigates different funding alternatives and proposes a project-level cash management plan. Two funding alternatives are considered; they are borrowing and company own financing. The model was built as a combinatorial optimization model that utilizes ant colony search capabilities. The model also utilizes Microsoft Project software and spreadsheets to maintain an environment that incorporates activities, their durations, and other project data, in order to estimate project completion time and cost. Ant Colony Optimization algorithm was coded as a Macro program using VBA. Finally, an example project was used to test the developed model, where it acted reliably in maximizing the contractor's profit in the test project.

  • PDF

Genetic Algorithm based Methodology for an Single-Hop Metro WDM Networks

  • Yang, Hyo-Sik;Kim, Sung-Il;Shin, Wee-Jae
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • We consider the multi-objective optimization of a multi-service arrayed-waveguide grating-based single-hop metro WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. We develop and evaluate a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Our methodology provides the network architecture and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with our methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

ANALYSIS OF POSSIBLE PRE-COMPUTATION AIDED DLP SOLVING ALGORITHMS

  • HONG, JIN;LEE, HYEONMI
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.797-819
    • /
    • 2015
  • A trapdoor discrete logarithm group is a cryptographic primitive with many applications, and an algorithm that allows discrete logarithm problems to be solved faster using a pre-computed table increases the practicality of using this primitive. Currently, the distinguished point method and one extension to this algorithm are the only pre-computation aided discrete logarithm problem solving algorithms appearing in the related literature. This work investigates the possibility of adopting other pre-computation matrix structures that were originally designed for used with cryptanalytic time memory tradeoff algorithms to work as pre-computation aided discrete logarithm problem solving algorithms. We find that the classical Hellman matrix structure leads to an algorithm that has performance advantages over the two existing algorithms.

Power and Spectrum Efficiencies Considering the HPA Nonlinearity in OFDM Communication System (OFDM 통신 시스템에서 비선형 증폭기 특성을 고려한 전력 효율과 대역 효율)

  • 이재은;윤기후;이준서;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.543-549
    • /
    • 2003
  • It is important to consider the nonlinear effects of the HPA(High Power Amplifier) in the OFDM communication systems and other digital communication systems as well. In this paper, we investigate a new performance figure-of$.$merit(D) that reflects both power and spectrum efficiencies. The performance figure-of-merit is expressed to include the spectrum and power efficiencies that depend on the magnitude of IBO(Input Backoff) and the number of subcarriers. So, we analyze the variation characteristics of the power efficiency and spectrum efficiency which has the tradeoff relationship.

A Metadata-enabled Approach for Scalable Video Streaming in Heterogeneous Networks

  • Thang, Truong Cong;Le, Hung T.;Nguyen, Duc V.;Pham, Anh T.
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.153-162
    • /
    • 2015
  • In today's pervasive computing environments, multimedia content should be adapted to meet various conditions of network connections, terminals, and user characteristics. Scalable Video Coding (SVC) is a key solution for video communication over heterogeneous networks, where user terminals have different capabilities. This paper presents a standard-compliant approach that adapts an SVC bitstream to support multiple users. The adaptation problem is formulated as an optimization problem, focusing on the tradeoff between qualities of different spatial layers of an SVC video. Then the adaptation process is represented by standard metadata of MPEG-21, which can be solved by universal processing to enable interoperable and automatic operation. Our approach provides the users with optimal quality, a wide flexibility, and seamless adaptation. To the best of our knowledge, this is the first study that shows the adaptation tradeoff between spatial layers of a conforming SVC bitstream.

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

The Impact of Network Coding Cluster Size on Approximate Decoding Performance

  • Kwon, Minhae;Park, Hyunggon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1144-1158
    • /
    • 2016
  • In this paper, delay-constrained data transmission is considered over error-prone networks. Network coding is deployed for efficient information exchange, and an approximate decoding approach is deployed to overcome potential all-or-nothing problems. Our focus is on determining the cluster size and its impact on approximate decoding performance. Decoding performance is quantified, and we show that performance is determined only by the number of packets. Moreover, the fundamental tradeoff between approximate decoding performance and data transfer rate improvement is analyzed; as the cluster size increases, the data transfer rate improves and decoding performance is degraded. This tradeoff can lead to an optimal cluster size of network coding-based networks that achieves the target decoding performance of applications. A set of experiment results confirms the analysis.

Design of Main Body and Edge Termination of 100 V Class Super-junction Trench MOSFET

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.565-569
    • /
    • 2018
  • For the conventional power MOSFET (metal-oxide semiconductor field-effect transistor) device structure, there exists a tradeoff relationship between specific on-state resistance (Ron,sp) and breakdown voltage (BV). In order to overcome this tradeoff, a super-junction (SJ) trench MOSFET (TMOSFET) structure with uniform or non-uniform doping concentration, which decreases linearly in the vertical direction from the N drift region at the bottom to the channel at the top, for an optimal design is suggested in this paper. The on-state resistance of $0.96m{\Omega}-cm2$ at the SJ TMOSFET is much less than that at the conventional power MOSFET under the same breakdown voltage of 100V. A design methodology for the edge termination is proposed to achieve the same breakdown voltage and on-state resistance as the main body of the super-junction TMOSFET by using of the SILVACO TCAD 2D device simulator, Atlas.

Noisy Data Aggregation with Independent Sensors: Insights and Open Problems

  • Murayama, Tatsuto;Davis, Peter
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • Our networked world has been growing exponentially fast. The explosion in volume of machine-to-machine (M2M) transactions threatens to exceed the transport capacity of the networks that link them. Therefore, it is quite essential to reconsider the tradeoff between using many data sets versus using good data sets. We focus on this tradeoff in the context of the quality of information aggregated from many sensors in a noisy environment. We start with a basic theoretical model considered in the famous "CEO problem'' in the field of information theory. From a point of view of large deviations, we successfully find a simple statement for the optimal strategies under the limited network capacity condition. Moreover, we propose an open problem for a sensor network scenario and report a numerical result.

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.