• 제목/요약/키워드: towers

검색결과 545건 처리시간 0.029초

저가형 냉각탑 자동 수질 진단 시스템 개발 (Development of a Low-cost Automatic Water Quality Diagnosis System for Cooling Towers)

  • 김정환;박한빈;강태삼;박정근
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.58-65
    • /
    • 2014
  • We developed a low-cost automatic diagnosis system for water quality in cooling towers to measure the concentrations of key ingredients such as $Ca^{2+}$, $Cl^-$, $PO{_4}^{3-}$, and $Fe^{2+}$. $Ca^{2+}$, and $Cl^-$ are the main factors that cause the generation of scale, corrosion, and sludge in water pipes. $PO{_4}^{3-}$ prevents corrosion, sludge and scale by inhibiting the ions (i.e., $Ca^{2+}$, $Cl^-$) from sticking to the pipes. $Fe^{2+}$ is an indicator of pipe corrosion. The proposed system consists of a microprocessor, a specimen container and heater, a precision pump, relays and valves, LED optical sources, and photo detectors. It automatically collects water samples and carries out pretreatment for determining the concentration of each chemical, and then estimates the concentration of each ion using low-cost LED optical sources and detectors. Experimental results showed that the accuracy of the proposed system is sufficiently high for water quality diagnosis and management of cooling towers, demonstrating the possibility of the proposed system's wide usage in real environments.

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.

New design concept and damage assessment of large-scale cooling towers

  • Noh, Sam-Young;Meskouris, Konstantin;Harte, Reinhard;Kratzig, Wilfried B.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.53-70
    • /
    • 2003
  • The motivation of this paper is to introduce the modern technology of large-scale cooling tower design. Thereby the innovative design concept for the world's largest cooling tower with a height of 200 m is briefly presented (Harte & Kr$\ddot{a}$tzig 2002, Bush et al. 2002). The new concept was considered not only for safety, but also for preservation of the durability of the structure, because cracking damage in large cooling towers in general cause extremely high cost of maintenance and repair. The paper demonstrates numerically the damage process in large cooling towers (Kr$\ddot{a}$tzig et al. 2001), and describes some basics of the numerical finite element approach for damage propagation modelling of shell structure. A prototype is analysed to trace the progressive damage process, whereby the changes in the dynamical behaviour of the structure, as mirrored in its natural frequencies and the corresponding mode shapes, are presented and discussed. Finally, the example shows that such damage processes develop progressively over the life-time of the shell structure.

다수의 냉각탑이 설치된 옥상에서 냉각탑별 재유입률 예측 (Prediction of Reentering Ratio of Individual Cooling Towers Scattered on a Building Roof)

  • 이태구;문선애;유호선;이재헌
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.923-932
    • /
    • 2006
  • In this paper, reentering ratio and cooling capacity of individual cooling towers arrayed on a building roof were studied by a numerical method. The number of 16 cooling towers were divided into 4 banks. It was considered the summer prevailing wind characteristics as west wind and south wind of 5 m/s. It was also considered the roofwall types as the curtainwall and the louverwall that had the outdoor air intake louver in the curtainwall. In this case, the louver was suggested as the solution that could prevent reentering phenomenon due to recirculation and interference of the discharge air. In the case of the curtainwall, the averaged reentering ratio are predicted 13.3% and 24.4% for the west and south wind of 5 m/s, respectively. In the case of the louverwall, the averaged reentering ratio are predicted 2.5% and 9.7% for the west and south wind of 5 m/s, respectively. Therefore, the louverwall is a appropriate solution for reducing the reentering phenomenon.

Collapse simulations of a long span transmission tower-line system subjected to near-fault ground motions

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Qiu, Canxing
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.211-220
    • /
    • 2017
  • Observations from past strong earthquakes revealed that near-fault ground motions could lead to the failure, or even collapse of electricity transmission towers which are vital components of an overhead electric power delivery system. For assessing the performance and robustness, a high-fidelity three-dimension finite element model of a long span transmission tower-line system is established with the consideration of geometric nonlinearity and material nonlinearity. In the numerical model, the Tian-Ma-Qu material model is utilized to capture the nonlinear behaviours of structural members, and the cumulative damage D is defined as an index to identify the failure of members. Consequently, incremental dynamic analyses (IDAs) are conducted to study the collapse fragility, damage positions, collapse margin ratio (CMR) and dynamic robustness of the transmission towers by using twenty near-fault ground motions selected from PEER. Based on the bending and shear deformation of structures, the collapse mechanism of electricity transmission towers subjected to Chi-Chi earthquake is investigated. This research can serve as a reference for the performance of large span transmission tower line system subjected to near-fault ground motions.

Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake

  • Zhang, Jun-Feng;Wang, Yuan-Hao;Li, Jie;Zhao, Lin
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.405-415
    • /
    • 2021
  • Following the dynamic property analysis and elaboration, linear response spectrum analysis (RSA) and response history analysis (RHA) were conducted on a representative hyperbolic cooling towers (HCT) in present study. The seismic responses in tower shell were illustrated in detail, including the internal force amplitude, modal contribution, influence from damping ratio, comparison of results got from RSA and RHA and especially the latitude distributions of internal forces. The results show that the eigenmodes could be classified in a new method into four types according to their mode shapes and only the lateral bending modes and vertical stretching modes are meaningful for horizontal and vertical earthquake correspondingly. The bending modes and seismic deformation display the same feature which is global lateral bending accompanied by minute circular flow displacement of section. This feature also decides the latitude distributions of internal forces as sine or cosine. Moreover, the following method is also proposed for approximate estimation of internal force amplitudes without time-consuming response history analysis: getting the response spectrums of the selected ground accelerations and then comparing values of response spectrums at the natural period of first lateral bending mode because it is always prime dominant for horizontal seismic responses.

Flutter stability of a long-span suspension bridge during erection under skew wind

  • Xin-Jun Zhang;Fu-Bing Ying;Chen-Yang Zhao;Xuan-Rui Pan
    • Wind and Structures
    • /
    • 제37권1호
    • /
    • pp.39-56
    • /
    • 2023
  • To ensure the wind stability of a long-span suspension bridge during deck erection under skew wind, based on the aerostatic and self-excited aerodynamic force models under skew wind, a computational approach of refined flutter analysis for long-span bridges under skew wind is firstly established, in which the effects of structural nonlinearity, the static wind action and full-mode coupling etc are fully considered, and the corresponding computational procedure is programmed. By taking the Runyang suspension bridge over the Yangtze River as example, the flutter stability of the bridge in completion under skew wind is then analyzed with the aerodynamic parameters of a similar bridge deck measured from the sectional model wind tunnel test under skew wind. Finally, through simulating the girder segments erected symmetrically from the midspan to towers, from the towers to midspan and simultaneously from the towers and midspan to the quarter points, respectively, the evolutions of flutter stability limits during the deck erection under skew wind are investigated numerically, the favorable aerodynamically deck erection sequence is proposed, and the influences of skew wind and static wind effect on the flutter stability of suspension bridge under construction are ascertained.

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.