DOI QR코드

DOI QR Code

Development of a Low-cost Automatic Water Quality Diagnosis System for Cooling Towers

저가형 냉각탑 자동 수질 진단 시스템 개발

  • Kim, Jung Hwan (Department of Aeropace Information Engineering, Konkuk University) ;
  • Park, Han-Bin (Department of Aeropace Information Engineering, Konkuk University) ;
  • Kang, Taesam (Department of Aeropace Information Engineering, Konkuk University) ;
  • Park, Jungkeun (Department of Aeropace Information Engineering, Konkuk University)
  • 김정환 (건국대학교 항공우주정보시스템공학과) ;
  • 박한빈 (건국대학교 항공우주정보시스템공학과) ;
  • 강태삼 (건국대학교 항공우주정보시스템공학과) ;
  • 박정근 (건국대학교 항공우주정보시스템공학과)
  • Received : 2013.08.02
  • Accepted : 2014.01.13
  • Published : 2014.01.29

Abstract

We developed a low-cost automatic diagnosis system for water quality in cooling towers to measure the concentrations of key ingredients such as $Ca^{2+}$, $Cl^-$, $PO{_4}^{3-}$, and $Fe^{2+}$. $Ca^{2+}$, and $Cl^-$ are the main factors that cause the generation of scale, corrosion, and sludge in water pipes. $PO{_4}^{3-}$ prevents corrosion, sludge and scale by inhibiting the ions (i.e., $Ca^{2+}$, $Cl^-$) from sticking to the pipes. $Fe^{2+}$ is an indicator of pipe corrosion. The proposed system consists of a microprocessor, a specimen container and heater, a precision pump, relays and valves, LED optical sources, and photo detectors. It automatically collects water samples and carries out pretreatment for determining the concentration of each chemical, and then estimates the concentration of each ion using low-cost LED optical sources and detectors. Experimental results showed that the accuracy of the proposed system is sufficiently high for water quality diagnosis and management of cooling towers, demonstrating the possibility of the proposed system's wide usage in real environments.

Keywords

References

  1. http://www.cti.org/whatis/coolingtowerdetail.shtml/ (retrieved on Jan. 6, 2014).
  2. http://www.hach.co.kr/04_product/sub01.php/ (retrieved on Jan. 6, 2014).
  3. http://www.nanohi.co.kr/ (retrieved on Jan. 6, 2014).
  4. K. Lee, M. Song, T. Kang, Y. J. Lee, and S. Sung, "Water quality control system development for cooling towers", J. Ctrl., Robot, & Syst. Eng., vol. 14, no. 1, pp. 36-41, 2008.
  5. S. Hur, and Y. Jung, "pH measurements with a microcantilever array-based biosensor system", J. Sensor Sci. & Tech., vol. 21, no. 3, pp. 186-191, 2012. https://doi.org/10.5369/JSST.2012.21.3.186
  6. S. S. Zumdahl, and S. A. Zumdahl, Chemistry, Houghton Mifflin, Boston, MA, pp. 129-179, 2007.
  7. S. G. Hong, and H. D. Kim, "Development of a multi-channel detector for capillary electrophoresis system", Anal. Sci. & Tech., vol. 11, no. 2, pp. 96-104, 1998.
  8. D. C. Harris, Quantitative chemical analysis, 7th edition, W.H. Freeman & Company, New York, NY, pp. 228-249, 2007.
  9. S. Ann, Environmental chemistry, DongHwa Technology Publishing, Paju, Korea, pp. 330-435, 2001.
  10. http://www.hach.com/asset-get.download-en.jsa?id=7639983723 (retrieved on Jan.6, 2014).
  11. D. G. Jones, "Photodiode array detectors in UV-VIS spectroscopy: part II", Anal. Chem, vol. 57, no.11, pp. 1207A- 1214A, 1985. https://doi.org/10.1021/ac00288a809
  12. R. S. Berns, Billmeyer and Saltzman's Principles of color technology, 3rd edition, Wiley, pp. 67-109, 2000.
  13. D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis, Brooks/Cole, Stanford, CT, pp. 335- 398, 2007.
  14. F. Rouessac, and A. Rouessac, Chemical Analysis: Modern Instrumentation Methods and Techniques, WILEY, Hoboken, NJ, pp. 167-206, 2007.
  15. R. Pallas-Areny, and J. G. Webster, Sensors and Signal Conditioning, John Wiley & Sons Inc, Hoboken, NJ, pp. 277- 321, 2001.
  16. M. E. V. Valkenburg, Analog Filter Design, CBS College Publishing, New York, NY, pp. 157-213, 1982.
  17. http://www.standard.go.kr/skin3/newviewe/ebookviewer.asp/ (retrieved on Mar. 22, 2011).