Browse > Article
http://dx.doi.org/10.12989/sem.2003.15.1.053

New design concept and damage assessment of large-scale cooling towers  

Noh, Sam-Young (Institute for Structural Statics and Dynamics RWTH Aachen)
Meskouris, Konstantin (Institute for Structural Statics and Dynamics RWTH Aachen)
Harte, Reinhard (Institute for Statics and Dynamics, Bergische Universitat Wuppertal)
Kratzig, Wilfried B. (Institute for Statics and Dynamics, Ruhr-Universitat Bochum)
Publication Information
Structural Engineering and Mechanics / v.15, no.1, 2003 , pp. 53-70 More about this Journal
Abstract
The motivation of this paper is to introduce the modern technology of large-scale cooling tower design. Thereby the innovative design concept for the world's largest cooling tower with a height of 200 m is briefly presented (Harte & Kr$\ddot{a}$tzig 2002, Bush et al. 2002). The new concept was considered not only for safety, but also for preservation of the durability of the structure, because cracking damage in large cooling towers in general cause extremely high cost of maintenance and repair. The paper demonstrates numerically the damage process in large cooling towers (Kr$\ddot{a}$tzig et al. 2001), and describes some basics of the numerical finite element approach for damage propagation modelling of shell structure. A prototype is analysed to trace the progressive damage process, whereby the changes in the dynamical behaviour of the structure, as mirrored in its natural frequencies and the corresponding mode shapes, are presented and discussed. Finally, the example shows that such damage processes develop progressively over the life-time of the shell structure.
Keywords
cooling tower; FE-simulation; structural damage; material modeling of RC;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 CEB 210 (1991), Behaviour and analysis of reinforced concrete structures under alternate actions inducinginelastic response-volume 1, CEB Bulletin d'Information 210 Comite Euro-International du Beton, Lausanne.
2 Eligehausen, R., Popov, E.P. and Bertero, V.V. (1983), "Local bond stress-slip relationships of deformed barsunder generalized excitations", College of Engineering, University of California.
3 Kreller, H. (1990), Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter LastundZwangeinwirkung, Deutscher Ausschuss fur Stahlbeton Heft 409.
4 Noh, S.-Y., Krätzig, W.B. and Meskouris, K. (2002) "Numerical simulation of serviceability, damage evolutionand failure of reinforced concrete shells", Comput. Struct., in print.
5 Harte, R. and Krätzig, W.B. (2002) "Large-scale cooling towers as part of an efficient and cleaner energygenerating technology", Thin-Walled Structures, 40, 651-664.   DOI   ScienceOn
6 Kratzig, W.B., Gruber, K. and Zahlten, W. (1992), "Numerical collapse simulation of large cooling towerschecking their safety and durability", Technical Report 92-3 Ruhr-University Bochum.
7 Kupfer, H.B., Hilsdorf, H.K. and Rüsch, H. (1969) "Behavior of concrete under Biaxial Stresses", ACI J., 66(8),656-666.
8 Busch, D., Haselwander, B., Hillemeier, B. and Strauß, J. (1999), "Innovative Betontechnologie für denKühlturmbau", beton., 1999:4, 108-109.
9 Su, X. and Zhu, B. (1994), "Algorithm for hysteresis analysis of prestressed-concrete frames", J. Struct. Eng.,120(6), 1732-1744.   DOI   ScienceOn
10 Kratzig, W.B. (1997), "Multi-level modelling techniques for elasto-plastic structural responses.", Owen D.R.J.,Onate E. and Hinton E. (editors). Computational plasticity, Part 1. Int. Center for Num. Meth. Engng.Barcelona, Spain, 457-468.
11 Tue, N.V. (1993), Zur Spannungsumlagerung im Spannbeton bei der Rissbildung unter statischer undwiederholter Belastung, Deutscher Ausschuss fur Stahlbeton Heft 435.
12 VGB-Guidelines (1997), "Structural design of cooling towers", VGB-Technical Committee Essen, Germany.
13 Noh, S.-Y. (2001), Beitrag zur numerischen Analyse der Schädigungsmechanismen von Naturzugkühltürmen,Dr.-Ing. Thesis, RWTH Aachen, Germany.
14 Busch, D., Harte, R., Krätzig, W.B. and Montag, U. (2002), "New natural draught cooling tower of 200 m of height", Eng. Struct., 24, 1509-1521.   DOI   ScienceOn
15 Darwin, D. and Pecknold, D.A. (1974), "Inelastic model for cyclic biaxial loading of reinforced concrete", CivilEngineering Studies SRS Nr. 409, University of Illinois.
16 Menzel, W. (1996), Gemischt-hybride Elemente Formulierungen für komplexe Schalen- strukturen unterendlichen Rotationen, TWM Nr.96-4, Institut fur Konstruktiven Ingenieurbau der Ruhr-Universitat Bochum.
17 Saenz, I.P. (1964), Discussion to "Equation for the stress-strain curve of concrete by Desayi and Krishnan", ACI J., 61(9), 1229-1235.
18 Karsan, D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div., ASCE,95(ST12), 2543-2563.
19 Krätzig, W.B., Meskouris, K. and Noh, S.-Y. (2001) "On damage process of natural draught cooling towers",Eds.: W.A. Wall et al., Proc. Int. Conf. Trends in Computational Structural Mechanics, 338-347, CIMNE,Barcelona, Spain.
20 Harte, R., Krätzig, W.B., Noh, S.-Y. and Petryna, Y.S. (2000), "On progressive damage phenomena ofstructures", Comput. Mech., 25, 404-412.   DOI   ScienceOn
21 MC 90 (1990), CEB-FIP Model CODE 1990 Design Code, Bulletin d'Information 195, Comite Euro-International du Béton, Lausanne.