• 제목/요약/키워드: tower vibration

검색결과 231건 처리시간 0.026초

난류하에서의 TMD에 의한 현수교 주탑의 진동제어 (Vibration Control for Tower of Suspension Bridge under Turbulence using TMD)

  • 김기두;황윤국;변윤주;장동일
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.181-191
    • /
    • 1997
  • 케이블이 가설되기 전까지 외팔보 형태로 지지되는 현수교의 주탑에 불규칙적인 변동 공기력이 작용할 때 발생하는 버페팅은 구조물의 기본 고유진동수와 일치하는 풍속이 존재하고 이에 따른 주탑의 공진에 의해 큰 응답을 유발할 수 있다. 버페팅 하중에 의한 동적 응답을 감소시키기 위해서 제진장치의 일종인 TMD(Tuned Mass Damper)를 부착한 주탑의 거동특성에 관한 연구를 유한요소법에 의하여 시간영역에서 수행하였다. 버페팅 하중을 구하기 위하여 주파수 영역의 속도스펙트럼을 시간영역의 무작위변량으로 변환시켰으며, peak factor를 이용하여 일정기간동안 일어날 수 있는 구조물의 최대 변위의 기대치를 구하였다. 최적의 TMD 부착위치와 제원을 변수별 수치해석을 통하여 결정하였으며, 최적의 제원을 갖는 TMD에 의한 풍속별 진동제어 효과를 검토하였다.

  • PDF

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Long run ambient noise recording for a masonry medieval tower

  • Casciati, S.;Tento, A.;Marcellini, A.;Daminelli, R.
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.367-376
    • /
    • 2014
  • Ambient vibration techniques are nowadays a very popular tool to assess dynamic properties of buildings. Due to its non destructive character, this method is particularly valuable, especially for health monitoring of historical monuments. The present ambient vibration experiment consists on the evaluation of vibration modes of a Medieval tower. Situated in Soncino (close to Cremona, in the Northern Italian region named Lombardia), the tower of 41.5 meters height has been monitored by seismometers located at different points inside the structure. Spectral ratios of the recorded ambient vibrations clearly identify a fundamental mode at about 1 Hz, with a slight difference in the two horizontal components. A second mode is also evidenced at approx 4-5 Hz, with a moderate degree of uncertainty. The records of a ML 4.4 earthquake, occurred during the monitoring period, confirm the information obtained by microtremor analysis. Daily variations of both 1st and 2nd mode were detected: these variations, of an amount up to 2%, seem to be well related with the temperature.

Vibration analysis of free-fixed hyperbolic cooling tower shells

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.785-799
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of hyperboloidal shells free at the top edge and clamped at the bottom edge like a hyperboloidal cooling tower by the Ritz method based upon the circular cylindrical coordinate system instead of related 3-D shell coordinates which are normal and tangent to the shell midsurface. The Legendre polynomials are used as admissible displacements. Convergence to four-digit exactitude is demonstrated. Natural frequencies from the present 3-D analysis are also compared with those of straight beams with circular cross section, complete (not truncated) conical shells, and circular cylindrical shells as special cases of hyperboloidal shells from the classical beam theory, 2-D thin shell theory, and other 3-D methods.

엑츄에이터를 이용한 송전철탑의 1/2 축소부분실험 (Half-Scaled Substructure Test of a Transmission Tower Using Actuators)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.178-188
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, it was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

  • PDF

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.649-661
    • /
    • 2007
  • Friction-type reinforcing members(FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

너셀부 전단력을 고려한 타워-블레이드 연성계의 고유치 해석 (Eigenvalue Analysis of a Coupled Tower-blade System Considering the Shear Forces of a Nacelle)

  • 김민주;강남철
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.514-520
    • /
    • 2011
  • Eigenvalue analysis of a wind turbine system was investigated analytically. It is derived that the equations of motion of a tower and a blade are coupled by shear forces inter-connected by boundary conditions. The eigenvalues of the coupled system was calculated using Galerkin method and it is found that the system becomes unstable when the tower and blade modes are coalesced. Further, parameter studies for the eigenvalues were performed with respect to the rotating speed of a blade, nacelle mass, blade and tower densities.