• Title/Summary/Keyword: tower system

Search Result 839, Processing Time 0.031 seconds

Study on Structural Design of Glass/epoxy Composite Blade and Tower of Vertical Axis Wind Turbine System (수직축 풍력 발전 시스템의 유리/에폭시 복합재 블레이드 및 타워 구조 설계 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • This study is to propose the structural design and analysis procedure about composite blade and tower of vertical axis wind turbine technology. In this study, structural design of tower for vertical axis wind turbine was performed after vertical blade design and manufacturing. The structural design requirement and specification of blade and tower was investigated. After tower of structural design, the structural analysis of the tower was conducted by the finite element method. It was performed that the stress, deformation and natural frequency analysis at the applied loading. The design modification of tower configuration was proposed by structural analysis. It was confirmed that the final designed tower structure is safety through the structural analysis.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

A Study on GPS Application for Tower Crane (타워크레인에 대한 GPS적용 방안 연구)

  • Park, Chang-Wook;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.165-169
    • /
    • 2008
  • In other side the recent construction industry is a skyscraper, a large scale and a sophistication, a construct site have many problems that an aging of worker and shortage of work force. The purpose of this study was to develop the location of tower crane and the simulation technology of tover crane. The automation of tower carne is a important component in skyscrapers. Specially, this study suggested that it was to develop the exact location system through GPS(Global Positioning System) better than former times.

  • PDF

Development of the Bus Duct Installation System for Wind Tower (풍력타워용 부스덕트 포설시스템 개발)

  • Rhee, Huinam;Lee, Joon Keun;Kim, Bong-Seok;Park, Seong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • A bus duct system for wind tower is introduced. A marine cable has been widely used in wind tower or various offshore structures. However, as the electric load capacity is increases, large number of cable lines must be used to cover the huge amount of electric capacities. Therefore, the installation of the cable lines becomes very difficult due to the heavy weight and volume of the cables. On the other hand, by using a single bus duct system line, the power capacity amount of 16 cables can be delivered with significantly compacted form. However, unlike flexible cables, the bus duct is relatively stiff which could generate the resonance phenomenon in the operating condition of the wind tower. In this study, the vibration characteristics of the bus duct are investigated and its long-term reliability during the life time of the wind tower is verified.

A study on performance test of water heat storage type heat-pump system using cooling tower heat source (냉각탑을 이용한 축열식 히트펌프시스템의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Hyo-Sik;Han, Woo-Yong;Kim, Uk-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1099-1104
    • /
    • 2008
  • Recent year, mean energy consumptions of a people are higher than other country. And international oil price became over 120 dollar. This energy environment as well as energy war. Maybe, the Meteorological Administration is going to enforce scorching heatwave special report system from that come summer. Besides, 2008 summer, maximum demand power is expected by 64,240,000kW. The electric power equipment reserve rate appeared in to keep 12.5% level. Chilled water storage system witch is one of electric load administration system. Heat pump system used cooling tower heat recovery is advantage that use is possible to summer in small a public bath building. In this paper, we suggest that heat pump system by heat recovery using cooling tower when it is heating operation of ambient air temperature. To apply cooling tower heat recovery heat pump to chilled water heat storage type and achieved performance evaluation about operation. As a result, performance of heat pump system that about 121% in cooling mode, 138% in heating mode higher than KEPCO standard. And heating operation possible to ambient air temperature about $23^{\circ}C$, which of appear cooling tower outlet temperature about $13^{\circ}C$.

  • PDF

Temperature effect on seismic behavior of transmission tower-line system equipped with SMA-TMD

  • Tian, Li;Liu, Juncai;Qiu, Canxing;Rong, Kunjie
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Transmission tower-line system is one of most critical lifeline systems to cities. However, it is found that the transmission tower-line system is prone to be damaged by earthquakes in past decades. To mitigate seismic demands, this study introduces a tuned-mass damper (TMD) using superelastic shape memory alloy (SMA) spring for the system. In addition, considering the dynamic characteristics of both tower-line system and SMA are affected by temperature change. Particular attention is paid on the effect of temperature variation on seismic behavior. In doing so, the SMA-TMD is installed into the system, and its properties are optimized through parametric analyses. The considered temperature range is from -40 to $40^{\circ}C$. The seismic control effect of using SMA-TMD is investigated under the considered temperatures. Interested seismic performance indices include peak displacement and peak acceleration at the tower top and the height-wise deformation. Parametric analyses on seismic intensity and frequency ratio were carried out as well. This study indicates that the nonlinear behavior of SMA-TMD is critical to the control effect, and proper tuning before application is advisable. Seismic demand mitigation is always achieved in this wide temperature range, and the control effect is increased at high temperatures.

A Study on Development of Structural Analysis Program og LNG Pump Tower (LNG 운반선용 펌프타워의 구조해석 프로그램 개발에 관한 연구)

  • Lee Kang-Su;Son Choong-Yul;Won Jing-Bum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.881-888
    • /
    • 2006
  • The purpose of this study is to develop a structural. analysis system of LNG pump tower structure. The system affords to build optimized finite element model and procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the analysis. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF

UsN based Soundness Monitoring Diagnosis System of Power Transmission Steel Tower (UsN 기반의 송전철탑 건전성 감시진단시스템 기본설계)

  • Lee, Dong-Cheol;Bae, Ul-Lok;Kim, Woo-Jung;Min, Bung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • In this paper, design method for power tower hazard diagnosis/predition system based on UsN was proposed. The proposed method used multi-hybrid sensors to measure rotation, displacement, and inclination state of power tower, and made decision/prediction of hazard of power tower. System design was made with requirement analysis of monitoring for transmission power facility and use of MEMS and optic fiber sensors. For hazard decision, analysis of correlation was made using sensor output. LN based on IEC61850,international standard for digital substation, was also proposed. For transmission facility monitoring, digital substation and power tower were considered as parts of power facility networks.

An Experimental Study on the Cooling Tower of Plume Prevention and Performance Improvements (냉각탑 백연방지의 성능 향상에 관한 실험적 연구)

  • JEONG, SOON YOUNG;LEE, BYEONG CHEON;KIM, SUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.578-584
    • /
    • 2019
  • The occurrence of white plume in the cooling tower is phenomenon that the steam in the air through the cooling tower fan is condensed again by the cold ambient air to become saturated moist air. Accordingly, this can cause many problems like spoiling landscape around the cooling tower, odor of ambient air, falling accident by frozenness in the winter, and traffic accident, etc. This study was to install the heat exchanger in the inside of the cooling tower in order to prevent the white plume phenomenon in the cooling tower without affecting the performance of cooling tower. In addition, this study was to discharge the part of cooling water into the atmosphere through the recirculation of heat exchanger after creating dry air by heating the saturated moist air to the dew point temperature. At that time, this study was to conduct the experimental study in order to secure the optimal design data to prevent the white plume in the cooling tower because it checked the dry·moist temperature and relative humidity in the inside·outside of cooling tower on the moist air, and evaluated the performance of the heat exchanger.

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.