• Title/Summary/Keyword: tower leg

Search Result 22, Processing Time 0.039 seconds

Half-Scaled Substructure Test of a Transmission Tower Using Actuators (엑츄에이터를 이용한 송전철탑의 1/2 축소부분실험)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.178-188
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, it was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

  • PDF

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds

  • Zhu, L.D.;Xu, Y.L.;Zhang, F.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.53-70
    • /
    • 2003
  • Tsing Ma Bridge in Hong Kong is the longest suspension bridge in the world carrying both highway and railway. It has two H-shape concrete towers, each of which is composed of two reinforced concrete legs and four deep transverse prestressed concrete beams. A series of wind tunnel tests have been performed to measure the aerodynamic coefficients of the tower legs and transverse beams in various arrangements. A 1:100 scaled 3D rigid model of the full bridge tower assembled from various tower components has been constructed for different test cases. The aerodynamic coefficients of the lower and upper segments of the windward and leeward tower legs and those of the transverse beams at different levels, with and without the dummy bridge deck model, were measured as a function of yaw wind angle. The effects of wind interference among the tower components and the influence of the bridge deck on the tower aerodynamic coefficients were also investigated. The results achieved can be used as the pertinent data for the comparison of the computed and field-measured fully coupled buffeting responses of the entire bridge under yaw winds.

Finite Element Analysis of 345kV Transmission Tower considering Nonlinear Factors (비선형인자를 고려한 345kV 송전철탑의 유한요소해석)

  • Kim, Jong-Min;Chang, Jin-Won;Park, Jong-Sup;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.337-340
    • /
    • 2008
  • There were two transmission tower collapses due to Typhoon 'Maemi' in 2003. The reason that a collapse was happened was excessive wind load. One was buckled in the leg part and the other was buckled in the middle bracing part. To investigate a steel transmission tower failure mechanism, 2nd order nonlinear analysis should be performed. Considering the effect of initial imperfection and theresidual stress of angle section during nonlinear analysis, this study can estimate the ultimate strength and the ultimate behavior of the transmission tower.

  • PDF

Nonlinear Analysis of 345kV Transmission Tower Considering Initial Imperfection and Residual Stress (초기결함과 잔류응력을 고려한 345kV 송전철탑의 비선형해석)

  • Chang, Jin-Won;Kim, Seung-Jun;Park, Jong-Sup;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.283-286
    • /
    • 2008
  • There were two transmission tower collapses due to Typhoon 'Maemi' in 2003. The reason that a collapse was happened was excessive wind load. One was buckled in the leg part and the other was buckled in the middle bracing part. To investigate a steel transmission tower failure mechanism, 2nd order nonlinear analysis should be performed. Considering the effect of initial imperfection and theresidual stress of angle section during nonlinear analysis, this study can estimate the ultimate strength and the ultimate behavior of the transmission tower.

  • PDF

Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction (송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Lee, Sung-Kyung;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.649-661
    • /
    • 2007
  • Friction-type reinforcing members(FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction (송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

TowerWalker: Speed improvement through trajectory optimization and maximally elongated leg (타워워커: 보행 경로 최적화와 극대화된 다리 길이를 통한 속도 향상)

  • Nam, Jiwon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.389-396
    • /
    • 2016
  • In order to maximize the speed of Theo Jansen Mechanism in an given design space and prototyping material, the trajectory path was maximized according to several literature reviews, and the lower leg was elongated maximally in order to minimize the shift between support phase and transfer phase.

  • PDF

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.