• Title/Summary/Keyword: toughened epoxy

Search Result 17, Processing Time 0.021 seconds

Study on the AC Interfacial Breakdown Prosperities in the Interface between Toughened Epoxy and Rubber (Toughened Epoxy/Rubber계면의 교류 절연파괴 현상에 관한 연구)

  • 김태형;배덕권;이동규;정일형;김충혁;이홍표;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.771-774
    • /
    • 2000
  • Recently, complex insulation method is used in insulation system for underground power delivery devices. Considering the interfaces which affect stability of insulation system, By modeling interface between Epoxy and Rubber, AC interfacial breakdown properties with variation of many conditions to influence on electrical properties were investigated. In this paper, toughened Epoxy and Silicone rubber were used for materials to make interface .

  • PDF

Rubber Toughened Epoxy

  • Ratna, D.;Banthia, Ajit K.
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • Toughening of epoxy resins for improvement of crack resistance has been the subject of intense research interest during the last two decades. Epoxy resins are successfully toughened by blending with a suitable liquid rubber, which initially remains miscible with epoxy and undergoes a phase separation in the course of curing that leads to the formation of a two-phase microstructure, or by directly blending preformed rubbery particle. Unlike the situation for thermoplastics, physical blending is not successful for toughening epoxy resins. Recent advances in the development of various functionalized liquid rubber-based toughening agents and core-shell particles are discussed critically in this review.

Study on the Long Time Breakdown Voltage in the Macro Interface between Epoxy and Rubber (에폭시/고무 거시계면에서 장시간 절연파괴전압에 대한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.1003-1008
    • /
    • 2002
  • In this paper, the estimation of lifetime with the various conditions of the interface between toughened epoxy and rubber which are consisting materials of underground power delivery system has been studied. After the measurement of the short time AC interfacial breakdown strength on macro interfaces at room temperature, the breakdown time at several voltages were measured under the constant voltages lower than the short time breakdown voltage. The long time breakdown voltage was calculated by using Inverse Power Law. Two types of interfaces was studied. One was the interface between toughened epoxy and EPDM(Ethylene Prorylene Diene Terpolymer). The other was the interface between toughened epoxy and silicon rubber. Interfacial pressure and roughness of interfaces was determined through the characteristic of short time AC interfacial breakdown strength. Oil condition was no oiled, low viscosity oiled and high viscosity oiled. High viscosity oiled interface between Toughened epoxy and silicon rubber had the best lifetime exponent, 20.69. and the breakdown voltage of this interface after 30 years was evaluated 19.27㎸.

The Effect of CTBN Rubber on Mechanical Properties of Epoxy-Clay Nanocomposite (CTBN 고무 첨가에 따른 에폭시-점토 나노복합체의 물성 변화)

  • Lee, Hun-Bong;Kim, Ho-Gyum;Yoon, Keun-Byoung;Lee, Dong-Ho;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The effect of MMT on mechanical properties of CTBN toughened epoxy nanocomposite is studied. In case of CTBN toughened epoxy nanocomposite with modified MMT, it is found that the enhancement of toughness and tensile properties are exhibited in CTBN toughened epoxy nanocomposite with modified MMT From the results of fractured surface morphology of sample, it is clearly shown that the improved mechanical properties can be obtained in CTBN toughened nanocomposite due to the significant energy dissipation mechanism by MMT loading.

Study on the AC Interfacial Breakdown Properties in the Interface between toughened Epoxy and Silicone Rubber (Toughened 에폭시와 실리콘고무 계면의 교류 절연파괴 현상에 관한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1079-1084
    • /
    • 2002
  • Because complex insulation method is used in EHV(extra high voltage) insulation systems, macro Interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. Interface between toughened epoxy and silicone rubber was selected as a interface in EHV insulation systems and tested AC interfacial breakdown properties with variation of many conditions to influence on electrical Properties, such as interfacial pressure, roughness and oil. Specimen was designed to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the direction of the interface between epoxy and silicone rubber by using FEM(finite elements method). It could control the interfacial pressure, roughness and viscosity of oil. From the result of this study, it was shown that the interfacial breakdown voltage is improved by increasing interfacial Pressure and oil. In particular, the dielectric strength saturates at certain interracial Pressure level. The decreasing ratio of the interfacial breakdown voltage in non-oiled specimen was increased by the temperature rising, while oiled specimen was not affected by temperature.

Study on Crack Resistance Improvement of Epoxy Insulation (Epoxy 절연물의 내크랙성 향상에 관한 연구)

  • Ha, Young-Kil;Kim, Su-Yon;Lee, Sang-Jin;Kim, Young-Seong;Park, Wan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1581-1583
    • /
    • 1999
  • Epoxy Compound has been used as insulation material in cable accessories. During the applying voltage to cable, heat shock is induced to accessory by the temperature difference between atmosphere and conductor. In this study, crack resistance, thermal and mechanical properties were evaluated about conventional epoxy compound and rubber toughened epoxy compound. Because rubber absorbs the stress caused by heat shock, crack resistance of rubber toughened epoxy compound is high. In the case of low thermal expansion coefficient, the compound shows high crack resistance because of low volumetric change.

  • PDF

Impact Fracture Behavior of Toughened Epoxy Resin Applied Carbon Fiber Reinforced Composites (Toughened 에폭시 수지를 사용한 탄소 섬유강화 복합재료의 충격파괴 거동)

  • 이정훈;황승철;김민영;김원호;황병선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.111-114
    • /
    • 2003
  • Thermosets are highly cross-linked polymers with a three-dimensional molecular structure. The network structure gives rise to mechanical properties, however, one major drawback of thermosets, which also results from their network structure, is their poor resistance to impact and to crack initiation. In this study, to solve this problem, the reactive thermoplastics such as amine terminated polyetherimide (ATPEI), ATPEI-CTBN-ATPEI(ABA) triblock copolymer, CTBN-ATPEI(AB) diblock copolymer, and carboxyl group modified ATPEI was synthesized, after that blended with epoxy resin, and the carbon fiber reinforced composites were fabricated. The impact load, energy, and delamination were investigated by using drop weight impact test and C-scan test. As a results, the ABA/epoxy blend system showed good impact properties.

  • PDF

A study on the v-t characteristics of interfaces between Toughened Epoxy and Rubber with Inverse Power Law (역승법칙을 이용한 터픈드 Epoxy/Rubber 계면의 V-t 특성에 관한 연구)

  • 박정규;이동규;오현석;신철기;박건호;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • In this study, the interfacial dielectric breakdown phenomenon of interface between Epoxy and Rubber was discussed, which affects the stability of insulation system of power delivery devices. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long time breakdown life time can be evaluated.

  • PDF

Effect of agglomerated zirconia-toughened mullite on the mechanical properties of giant cane fiber mat epoxy laminated composites

  • Sahu, Pruthwiraj;Parida, Sambit Kumar;Mantry, Sisir
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.233-243
    • /
    • 2019
  • This paper depicts the development and characterizations of laminated composites made with cellulosic giant cane (Arundinaria gigantea) fiber mats and epoxy resin. Zirconia-toughened mullite (ZTM) is used as a filler material in the laminated composite which was prepared from sillimanite through plasma processing technique. The mechanical characterizations of this composite have been carried out as per ASTM standards to evaluate its usability as a structural material. The effects of varying weight percentages of the filler and two different fiber orientations namely, angle-ply [$+45^{\circ}/-45^{\circ}/+45^{\circ}$] and balanced cross-ply [$0^{\circ}/90^{\circ}/0^{\circ}$] on the physical and mechanical properties such as density, microhardness, impact strength, tensile strength and interlaminar shear strength of the layered composite specimens have been investigated. The study indicates that the inclusion of zirconia-toughened mullite in the composite laminate as filler improves its mechanical properties. Moreover, the use of giant cane fiber mat in the laminate is more eco-friendly than the synthetic fibers. This research also helps in generating additional data to enrich the repository of natural fiber reinforced laminated composites.