• Title/Summary/Keyword: total time on test transform order

Search Result 5, Processing Time 0.019 seconds

On Some New Stochastic Orders of Interest in Reliability Theory

  • Kayid, M.;El-Bassiouny, A.H.;Al-Wasel, I.A.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.95-109
    • /
    • 2007
  • The purpose of this paper is to study new notions of stochastic comparisons and ageing classes based on the total time on test transform order. We give relationships to other stochastic orders and aging classes given previously. Several preservation properties under the reliability operations of random minima and series system are given.

  • PDF

Investigation of Degradative Signals on Outdoor Solid Insulators Using Continuous Wavelet Transform

  • Uzunoglu, Cengiz Polat
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.683-689
    • /
    • 2016
  • Most outdoor solid insulators may suffer from surface degradations due to non-stationary currents that flow on the insulator surface. These currents may be classified as leakage, discharge and tracking currents due to their disturbing potencies respectively. The magnitude of these currents depends on the degree of the contamination of surface. The leakage signals are followed by discharge signals and tracking signals which are capable of forming carbonized tracking paths on the surface between high voltage and earth contacts (surface tracking). Surface tracking is one of the most breakdown mechanisms observed on the solid insulators, especially polymers which may cause severely reduced lifetime. In this study the degradations observed on polyester resin based insulators are investigated according to the IEC 587 Inclined Plane Test Standard. The signals are monitored and recorded during tests until surface tracking initiated. In order to prevent total breakdown of an insulator, early detection of tracking signals is vital. Continuous Wavelet Transform (CWT) is proposed for classification of signals and their energy levels observed on the surface. The application of CWT for processing and classification of the surface signals which are prone to display high frequency oscillations can facilitate real time monitoring of the system for diagnosis.

Study on Optimization of Fatigue Damage Calculation Process Using Spectrum (스펙트럼을 이용한 피로손상도 계산과정 최적화 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

Acoustic Estimation of Phase Velocity of Closed-Cell Kelvin Structure based on Spectral Phase Analysis

  • Kim, Nohyu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.339-345
    • /
    • 2022
  • In this paper, the effect of porosity on the acoustic phase velocity of the 3D printed Kelvin closed-cell structure was investigated using the spectral phase analysis. Since Kelvin cells bring about the large amount of scattering, acoustic pulses in ultrasonic measurements undergoes a distortion of waveforms due to the dispersion effect. In order to take account on the dispersion, mathematical expressions for calculating the phase velocity of longitudinal waves propagating normal to the plane of the Kelvin structure are suggested by introducing a complex wave number based on Fourier transform. 3D Kelvin structure composed of identical unit-cells, a polyhedron of 14 faces with 6 quadrilateral and 8 hexagonal faces, was developed and fabricated by 3D CAD and 3D printer to represent the micro-structure of porous materials such as aluminum foam and cancellous bone. Total nine samples of 3D Kelvin structure with different porosity were made by changing the thickness of polyhedron. Ultrasonic pulse of 1MHz center frequency was applied to the Kelvin structures for the measurement of the phase velocity of ultrasound using the TOF(time-of-flight) and the phase spectral method. From the experimental results, it was found that the acoustic phase velocity decreased linearly with the porosity.

Study on the Harmonic Extraction Technique of the Power Conditioning System using High Performance DSP Controller (고성능 DSP 제어기를 사용한 태양광인버터의 하모닉 추출기법에 대한 연구)

  • Lee, Jeong-Eun;Min, Jun-Ki;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.266-273
    • /
    • 2010
  • The main function of the power conditioning system (PCS) is grid-connection with renewable system. The level of total harmonic distortion(THD) caused by the PCS should be maintained less than 5% according to the IEEE-1547 regulation. The THD is measured by the dedicated instrument, not by the PCS in the domestic products. There should be the necessity for harmonic measurement by the PCS in order to cope with degradation or fault condition. In this paper, the real-time harmonic measurement technique using highperformance DSP controller is presented. The proto-system is manufactured using 32-bit floating DSP processor and tested with 256-point DFT(Discrete Fourier Transform) algorithm. The test result shows that the harmonic calculation time is less than 1 [ms]. It can be used as a auxiliary method for predicting the fault in the PCS system.