• Title/Summary/Keyword: total phenol compound contents

Search Result 44, Processing Time 0.024 seconds

Growth and Bioactive Compound Contents of Various Sprouts Cultivated under Dark and Light Conditions (광 유무에 따른 다양한 새싹 채소의 생육 및 생리활성 화합물의 함량)

  • Lee, Jin-Hui;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.218-229
    • /
    • 2021
  • Recently, as consumers' interest and importance in health care have significantly increased, they prefer natural and organic foods that do not use chemical pesticides. Since sprout vegetables effectively promote health and prevent diseases such as cancer and cardiovascular disease, the consumption of sprout vegetables, a highly functional and safe food, has been increased significantly. This study aimed to investigate the effect of light on the growth and bioactive compounds of seven different sprout vegetables. After sowing the seeds of various sprout vegetables (kale, Chinese kale, broccoli, red cabbage, alfalfa, red radish, and radish), the sprouts were cultivated under light conditions (20℃, RGB 6:1:3, 130 μmol·m-2·s-1, 12 hours photoperiod) and dark condition for 7 days. Sprouts samples were taken at 1-day intervals from 4 to 7 days after treatment. The fresh weight, dry weight, plant height, total phenol content, and antioxidant capacity were measured. Brassica species (kale, Chinese kale, broccoli, red cabbage) and Medicago species (alfalfa) had significantly higher fresh weight values under dark conditions, while the content of bioactive compounds was increased considerably under light conditions. In contrast, the fresh weight of Raphanus genus (red radish, radish) significantly increased under the light condition, but the antioxidant phenolic compounds were significantly higher under the dark state. A negative correlation was observed between the growth and secondary metabolites in various sprout vegetables. This study confirmed the effect of light and dark conditions on different sprout vegetables' growth and nutritional value and emphasizes the importance of harvest time in producing high-quality sprout vegetables.

Effects of Artificial Light Sources on Growth and Yield of Peucedanum japonicum Hydroponically Grown in Plant Factory (식물공장 인공광원이 방풍나물의 생육 및 수량에 미치는 영향)

  • Lee, Guang-Jae;Heo, Jeong-Wook;Kim, Hyun-Hwan;Jung, Chung-Ryul;Kim, Dong-Eok;Nam, Sang-Young
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • This study was carried out to investigate the effects of artificial light sources on growth and yield of hydroponically grown Peucedanum japonicum in plant factory. Treatments were composed with; florescent lamp(FL) as control, and LED lights; R:B(2:1, RB), R:B:W(2:1:3, RBW), and R:B:G:W(2:1:0.5:3, RBGW). Plant height of RBGW and FL treatments were superior to RB and RBW. Leaf weight of RBW and RB were superior to FL and RBGW. There were no significant difference of leaf length and thickness among the treatments. Lightness of leaves was same tendency with plant height. Total phenolic compound content was the high in order of RB as $105.77mg{\cdot}100g^{-1}$ GE, RBW as $92.52mg{\cdot}100g^{-1}$ GE, FL as $89.08mg{\cdot}100g^{-1}$ GE, and RBGW $82.00mg{\cdot}100g^{-1}$ GE. Total flavonoids were not detected in all treatments. Vitamin C content was the highest in RB and the lowest in FL. Total dietary fiber were the highest in FL and the lowest in RBGW. There was no significant difference cystein and methionine contents among the treatments. Concludely, yield, total phenolic compounds, and vitamin C content was high in RBW and RB. We reached conclusion that RBW is best artificial light source considering yield, functionality and eye fatigability when work. We recommend to further study LED pulse and duty rates for increasing functionality.

Physiological Activity of Methanol Extracts from Sambucus sieboldiana var. miquelii (Nakai) Hara (지렁쿠나무 메탄올 추출물의 생리활성 연구)

  • Oh, Yu Jin;Cho, Hae Jin;Woo, Hyun Sim;Byeon, Jun-Gi;Kim, Yeong-Su;Kim, Dae Wook
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.965-972
    • /
    • 2020
  • Sambucus sieboldiana var. miquelii (Nakai) Hara is distributed in Korea, China, and Japan, and has been used as an anti-rheumatic in folk medicine in oriental countries. The present study aims to investigate the potential use of this species in health functional foods, cosmetics, and food preservatives. Methanol extracts of leaves and branches from this plant were prepared to quantitatively analyze the total phenol and flavonoid contents, and to investigate the antioxidative and enzyme inhibitory activities, and the inhibition of nitric oxide (NO) production activity. The results showed that the total polyphenol and flavonoid contents of the crude extract were 1.52±0.1 mg/g and 1.73±0.1 mg/g, respectively. S. sieboldiana polyphenols exhibited potent scavenging activity shown by 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and 2, 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation assay. The crude extract also exhibited significant α-glucosidase and tyrosinase inhibitory activity with IC50 values of 183.5 ㎍/ml and 323.9 ㎍/ ml, respectively. Additionally, the crude extract exhibited strong anti-inflammatory activity determined through the nitric oxide inhibition assay in a dose-dependent manner with an IC50 value of 36.7 ㎍/ml and no cytotoxic effect on the macrophages. Therefore, we demonstrated that the leaves and branches of S. sieboldiana extract possess antioxidant, anti-diabetic, depigmentation potential, and NO production inhibitory activities. According to recent research, S. sieboldiana has great potential as a source of the bioactive compound which could be used as food, cosmetics, and pharmaceutical agents.

Characteristics of Growth, Yield, and Physiological Responses of Small-Sized Watermelons to Different Soil Moisture Contents Affected by Irrigation Starting Point in a Plastic Greenhouse (소형 수박 시설 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성 구명)

  • Huh, Yoon-Sun;Kim, Eun-Jeong;Noh, Sol-Ji;Jeon, Yu-Min;Park, Sung-Won;Yun, Geon-Sig;Kim, Tae-Il;Kim, Young-Ho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.388-398
    • /
    • 2020
  • Watermelon yield mainly depends on soil water content controlled by irrigation in a plastic greenhouse. In this study, we investigated the effect of different soil moisture contents affected by irrigation starting point on growth, yield, and physiological responses of small-sized watermelons. Irrigation was initiated at 5 different levels of soil water content as a starting point with soil moisture detecting sensor after 14 days of transplanting, and stopped at 7 ~ 10 days before harvest. These treatments were compared with the conventional periodic irrigation as control. When soil had the lowest moisture content (-50 kPa), the overall shoot growth was retarded, but the root length and root dry weight increased. The photosynthetic parameters (photosynthetic rate, stomatal conductance, and transpiration rate) of watermelon leaves decreased significantly in the lowest soil moisture content (-50 kPa). On the other hand, the photosynthetic rates of watermelon leaves grown with irrigation starting point between -20 and -40 kPa were observed to be higher than those of other treatments. Fruit set rate and marketable fruit yield increased significantly at -30 kPa and -40 kPa. Proline, abscisic acid (ABA), total phenol and citrulline, which are known to contribute to stress tolerance under drought condition, increased as soil water content decreased, particularly, the largest increases were recorded at -50 kPa. From these results, it was found that an appropriate water supply adjusted with an irrigation starting point between -30 and -40 kPa could help to keep favorable soil water content during the cultivation of small-sized watermelons, promoting the marketable fruit production as well as inducing the vigorous plant growth and reproductive development.