• Title/Summary/Keyword: total mixed ration

Search Result 197, Processing Time 0.038 seconds

The impact of different diets and genders on fecal microbiota in Hanwoo cattle

  • Seunghyeun, Sim;Huseong, Lee;Sang, Yoon;Hyeonsu, Seon;Cheolju, Park;Minseok, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.897-910
    • /
    • 2022
  • Bovine fecal microbiota is important for host health and its composition can be affected by various factors, such as diet, age, species, breed, regions, and environments. The objective of this study was to evaluate the impact of diet and gender on fecal microbiota in Korean native Hanwoo cattle. The 16S rRNA gene amplicon sequencing of fecal microbiota was conducted from 44 Hanwoo cattle divided into four groups: (1) 11 heifers fed an oat hay plus total mixed ration (TMR) diet for breeding (HOTB), (2) 11 heifers fed an early fattening TMR diet (HEFT), (3) 11 steers fed the early fattening TMR diet (SEFT), and (4) 11 steers fed the late fattening TMR diet (SLFT). Firmicutes and Bacteroidota were the first and second most dominant phyla in all the samples, respectively. The Firmicutes/Bacteroidota (F/B) ratio associated with feed efficiency was significantly greater in the SLFT group than in the other groups. At the genus level, Romboutsia, Paeniclostridium, and Turicibacter were the most abundant in the SLFT while Akkermansia, Bacteroides, and Monoglobus were the most abundant in the HOTB group. Although the same early fattening TMR diet was fed to Hanwoo heifers and steers, Marvinbryantia and Coprococcus were the most abundant in the HEFT group while Alistipes and Ruminococcus were the most abundant in the SEFT group. Shannon and Simpson diversity indices were significantly lower in the SLFT group than in the other groups. Distribution of fecal microbiota and functional genetic profiles were significantly different among the four treatment groups. The present study demonstrates that different diets and genders can affect fecal microbiota and the F/B ratio may be associated with feed efficiency in Hanwoo cattle. Our results may help develop strategies to improve gut health and productivity through manipulation of fecal microbiota using the appropriate diet considering Hanwoo cattle gender.

Metabolic profiling of serum and urine in lactating dairy cows affected by subclinical ketosis using proton nuclear magnetic

  • Eom, Jun Sik;Lee, Shin Ja;Kim, Hyun Sang;Choi, Youyoung;Jo, Seong Uk;Lee, Sang Suk;Kim, Eun Tae;Lee, Sung Sill
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.247-261
    • /
    • 2022
  • Ketosis is associated with high milk yield during lactating or insufficient feed intake in lactating dairy cows. However, few studies have been conducted on the metabolomics of ketosis in Korean lactating dairy cows. The present study aimed to investigate the serum and urine metabolites profiling of lactating dairy cows through proton nuclear magnetic resonance (1H-NMR) spectroscopy and comparing those between healthy (CON) and subclinical ketosis (SCK) groups. Six lactating dairy cows were categorized into CON and SCK groups. All experimental Holstein cows were fed total mixed ration. Serum and urine samples were collected from the jugular vein of the neck and by hand sweeping the perineum, respectively. The metabolites in the serum and urine were determined using 1H-NMR spectroscopy. Identification and quantification of metabolites was performed by Chenomx NMR Suite 8.4 software. Metabolites statistical analysis was performed by Metaboanalyst version 5.0 program. In the serum, the acetoacetate level was significantly (p < 0.05) higher in the SCK group than in the CON group, and whereas acetate, galactose and pyruvate levels tended to be higher. CON group had significantly (p < 0.05) higher levels of 5-aminolevulinate and betaine. Indole-3-acetate, theophylline, p-cresol, 3-hydroxymandelate, gentisate, N-acetylglucosamine, N-nitrosodimethylamine, xanthine and pyridoxine levels were significantly (p < 0.05) higher in the urine of the SCK group than that in the CON group, which had higher levels of homogentisate, ribose, gluconate, ethylene glycol, maltose, 3-methyl-2-oxovalerate and glycocholate. Some significantly (p < 0.05) different metabolites in the serum and urine were associated with ketosis diseases, inflammation, energy balance and body weight. This study will be contributed useful a future ketosis metabolomics studies in Korea.

Effects of feeding sodium metabisulfite-treated fruit and vegetable discards to Hanwoo heifers and cows

  • Lee, Won Hee;Ahmadi, Farhad;Kim, Young Il;Park, Jong Moon;Kwak, Wan Sup
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.410-421
    • /
    • 2022
  • Objective: Two series of experiments were conducted to determine how the incremental levels of sodium metabisulfite (SMB)-treated fruit and vegetable discards (FVD) in diet of Hanwoo heifers and cows affect their performance and health. Methods: In Exp. 1, 36 Hanwoo heifers were stratified by age (13.3±0.83 mo) and initial body weight (305±19.7 kg), and divided randomly to one of three diets containing 0%, 10%, or 20% SMB-treated FVD (as-fed basis). The experiment lasted 110 d, including 20 d of adaptation. In Exp. 2, 24 multiparous Hanwoo cows were divided into three groups based on age (48.2±2.81 mo) and initial body condition score (2.64±0.33). Cows in each block were assigned randomly to one of three diets containing 0%, 11%, or 22% SMB-treated FVD (as-fed basis). The experiment lasted 80 d, including a 20-d adaptation period. In both experiments, SMB-treated FVD was used as a replacement for wet brewers grain in total mixed ration (TMR). Results: Growing heifers exhibited no differences in their daily feed intake (6.58±0.61 kg/d dry matter [DM]), average daily gain (0.60±0.07 kg/d), and body condition score when they consumed the incremental levels of SMB-treated FVD. Although most blood metabolites were unaffected by treatments, blood urea-N and β-hydroxybutyrate levels decreased linearly as the SMB-treated FVD level increased in TMR. Similar to Exp. 1, minor differences were found in daily feed intake (8.27±0.72 kg DM/d) and body condition score of Hanwoo cows. Most blood metabolites remained unaffected by treatments, but blood urea-N decreased as the SMB-treated FVD level in TMR increased. Conclusion: Our findings suggest that SMB-treated FVD could be safely incorporated into the diet of Hanwoo heifers and cows, potentially improving N-use efficiency in the body while not impairing performance or health.

Effects of Total Mixed Ration with Wet Brewer's Grain on Nutrient Utilization in Breeding Korean Native Goats (맥주박을 첨가한 섬유질 배합사료가 번식흑염소의 영양소 이용율에 미치는 영향)

  • Choi, Sun-Ho;HwangBo, Soon;Kim, Sang-Woo;Sang, Byung-Don;Kim, Young-Keun;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.3
    • /
    • pp.147-154
    • /
    • 2006
  • This study was conducted to investigate the effects of Total Mixed Ration(TMR) with wet brewer's grain on feed intake, nutrient digestibility and nitrogen retention of breeding Korean native goat. Twelve breeding Korean native goats were divided into four treatment groups, which were fed TMR containing 20, 30, 40% of wet brewer's grain and a control group fed concentrate feed and hay, respectively. Results are summarized as follows. Dry matter contents of TMR with wet brewer's grain was 61.46-65.81%, that of crude protein was 14.42-15.59%, ADF and NDF were 28.32-28.52, 53.46-54.16%, each. These were not different by supplemental level of brewer's grain in TMR. However, NFC contents were lower according to increase wet brewer's grain in TMR. Dry matter intake of TMR supplemented with 20% of brewer's grain was tend to be higher than those of control group. CP and digestible CP intake of TMR diets supplemented wet brewer's grain was intended to higher than those of a control group. NFC and digestible NFC intake were significantly higher in control group than in WBG40 treatment(p<0.05). Digestibilities of DM, ADF, NDF and NFC in control group were higher than those from TMR with wet brewer's grain(p<0.05). Digestibilities of CP of TMR with supplemented wet brewer's grain was tend to be higher than those of a control group. Nitrogen retention of TMR supplemented wet brewer's grain was tend to be somewhat higher compared to the control group

Effects of Total Mixed Ration with Wet Brewer's Grain on the Performance and Nutrient Utilization in Castrated Korean Black Goats (맥주박 첨가 섬유질 배합사료가 거세흑염소의 생산성 및 영양소 이용율에 미치는 영향)

  • Choi, Sun-Ho;HwangBo, Soon;Kim, Sang-Woo;Sang, Byung-Don;Kim, Young-Keun;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.199-206
    • /
    • 2006
  • This study was conducted to investigate the effects of Total Mixed Ration (TMR) with wet brewer's grain on feed intake, nutrient digestibility and nitrogen retention of castrated Korean black goat. For feeding trial, forty castrated Korean black goats were divided into four treatment groups, which were fed TMR containing 20, 30, 40% of wet brewer's grain. For digestibility trial, twelve castrated Korean black goats were allotted to treatments in four groups of three goats. Results are summarized as follows. Dry matter (DM) contents of TMR with wet brewer's grain was $63.35{\sim}66.02%$, that of crude protein was $14.49{\sim}15.36%$, Acid detergent fiber (ADF) and Neutral detergent fiber (NDF) were $28.24{\sim}29.08,\;53.27{\sim}54.85%$, each. These were not different by supplemental level of brewer's grain in TMR. However, Non-fibrous carbohydrate (NFC) contents were lower according to increase wet brewer's grain in TMR. Average daily gain of control group were higher than those from TMR with wet brewer's gain (p<0.05). Intake of DM, Organic matter (OM) and NFC of TMR supplemented with 20% of brewer's grain were higher than those of other treatments (p<0.05). Crude protein (CP) and digestible CP intake of TMR diets supplemented wet brewer's grain was intended to higher than those of a control group. Digestibilities of DM, OM and NDF in control group were higher than those from TMR with wet brewer's grain (p<0.05). Digestibilities of CP of TMR with supplemented wet brewer's grain was tend to be higher than those of a control group. Nitrogen retention of TMR supplemented wet brewer's grain was tend to be somewhat higher compared to the control group

Effects of Supplemental Synbiotics Composed of Anaerobic Bacteria, Yeast and Mold on the Change of Chemical Composition and Fermentation Characteristics of Total Mixed Ration for Cattle (혐기성 박테리아, 효모 및 곰팡이로 제조된 synbiotics 첨가 축우용 완전혼합사료의 성분 변화 및 발효 특성에 미치는 영향)

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Jung, Ho-Sik;Moon, Yea-Hwang;Lee, Sang-Suk;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.241-248
    • /
    • 2009
  • In order to investigate the effects of synbiotics on change of chemical composition and fermentation characteristics of total mixed ration (TMR), eight TMRs fermented by synbiotics composing the anaerobic microbes (bacteria, yeast, mold) were alloted to the experimental treatments. Treatments were composed of untreated synbiotics(US), bacterial synbiotics (BS), yeast synbiotics (YS), mold synbiotics (MS), bacterial and mold synbiotics (BMS), yeast and mold synbiotics (YMS), bacterial and yeast synbiotics (BYS), and bacterial, yeast and mold synbiotics (BYMS). After 7 days of anaerobic fermentation, fermented-TMRs were exposed to air during 1, 3, 5, 7, 14 and 21 days. One hundred forty four (8 treatments ${\times}$ 6 exposing days ${\times}$ 3 replications) fermented- TMRs were manufactured by vinyl bag sized of 43 cm by 58 cm. The results obtained were as follows. Moisture contents of the fermented TMRs anaerobically ranged from 41% to 45%, and was similar to those of basal TMRs. As results of anaerobic fermentation, the concentration of crude protein was decreased by 11.7% to 14.8% in the untreated sample, while was rather increased by 11% when the TMR was fermented with BMYS. And also BMYS treatment showed decreases by 32% for crude fiber, 15.5% for NDF and 26.1% for ADF. Internal temperature of fermented-TMRs was highest at 7 day of exposing in the air. The pH of fermented-TMR juice was significant difference betweentreatments after 7 day of exposing in air, and that of BMS was highest at 14 day after exposing in air (P<0.05). Acid buffering capacity was increased in proportion to the exposing day of TMR, and peaked at 7 or 14 days after exposing. Ammonia concentration of fermented-TMRs was highest at 5 day after exposing in the air. Individual volatile fatty acid of fermented-TMR juice was very low level in all treatments. Although BMYS treatment to TMR inclined to increase in crude protein and decrease in fibers, but there were no positive effects on the fermentation characteristics after exposing in the air by supplementation of anaerobic synbiotics to TMR.

Effects of Manufacturing Methods of Broiler Litter and Bakery By-product Ration for Ruminants on Physico-chemical Properties (육계분과 제과부산물을 이용한 반추가축용 완전혼합사료(TMR) 제조 시 가공처리 방법이 물리화학적 특성에 미치는 영향)

  • Kwak, W.S.;Yoon, J.S.;Jung, K.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.593-606
    • /
    • 2003
  • This study was conducted to develop effective manufacturing methods of a total mixed ration(TMR) composed of broiler litter(BL) and bakery by-product(BB) for ruminants. Five experiments included a small-scaled manufacture of TMR using a deepstacking method(Exp. 1), its pelletization(Exp. 2), its field-scaled manufacture(Exp. 3), a field-scaled manufacture using an ensiling method(Exp. 4), and a mixing process of deepstacked BL and BB prior to feeding(Exp. 5). BL and BB were mixed at a ratio which makes total digestible nutrients of the TMR 69%. For each experiment, temperature, appearance and physico-chemical properties were recorded and analyzed. The chemical composition data revealed that the mixture of BL and BB showed nutritionally additive balance which resulted from a considerable increase(P<0.05) of organic matter and a desirable decrease(P<0.05) of protein and fiber up to the requirement level for growing ‘Hanwoo’ steers. Deepstacking of BL and BB in Exp. 1 and 3 resulted in a sufficient increase of stack temperature for pasteurization, little chemical losses, appearance of white fungi on the surface, and partial charring due to excess stack temperature. For Exp. 2, its pelleting, which was successful using a simple, small-scaled pelletizer, resulted in a little loss(P<0.05) of organic matter and an increase(P<0.05) of indigestible protein(ADF-CP). Ensiling the mixture in Exp. 4 made little effect on chemical composition; however, one month of the ensiling period was not enough for favorable silage parameters. Deepstacking BL alone in Exp. 5 tended(P<0.1) to decrease true protein : NPN ratio and hemicellulose content and increase ADF-CP content due to the heat damage occurred. Deepstacking or ensiling of BL-BB mixtures and simple incorporating of BB into deepstacked BL prior to feeding could be practical and nutrients-preservative methods in TMR manufacture for beef cattle, although ensiling needed further hygienic evaluation.

Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets

  • Luo, Guobin;Xu, Wenbin;Yang, Jinshan;Li, Yang;Zhang, Liyang;Wang, Yizhen;Lin, Cong;Zhang, Yonggen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.653-659
    • /
    • 2017
  • Objective: This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Methods: Eight multiparous Holstein cows (body weight [BW]: $717{\pm}63kg$; days in milk [DIM]: $169{\pm}29$) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. Results: The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Conclusion: Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

Ensiled Green Tea Waste as Partial Replacement for Soybean Meal and Alfalfa Hay in Lactating Cows

  • Kondo, Makoto;Nakano, Masashi;Kaneko, Akemi;Agata, Hirobumi;Kita, Kazumi;Yokota, Hiroomi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.960-966
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of protein supplementation of green tea waste (GTW) on the performance of lactating cows. Another aim was to increase resource utilization and to eliminate any environmental negative impact from the tea waste. GTW from a beverage company was ensiled at a low pH (<4.0) and high acetic acid and lactic acid concentration, and it contained high crude protein (CP, 34.8%), total extractable tannins (TET, 9.2%) and condensed tannin (CT, 1.7%). Two experiments were conducted to investigate the palatability and performance in lactating cows fed GTW. In the palatability trial, three lactating cows were allocated to three dietary treatments in a 3$\times$3 Latin square design. The animals were offered a total mixed ration (TMR) including GTW at rates of 0, 2.5 and 5.0% on a dry matter (DM) basis. Total DM intake was not different among the treatments. In the performance trial, four lactating cows were used in a 2$\times$2 Latin square design with a 3 week sampling period. GTW was incorporated into TMR at a rate of 5.0% on a DM and 10.0% on a CP basis. Thus GTW replaced alfalfa hay and soybean meal at a level of 25.0% on a DM. DM and CP intake were not affected by the inclusion of GTW, whereas TET and CT intake were significantly increased (p<0.001). Milk production, milk composition and the efficiency of milk production were not altered by the GTW inclusion. Although ruminal pH and VFA, and blood urea nitrogen were not changed, ruminal $NH_{3}-N$ and plasma total cholesterol were relatively low in the GTW group, but not significantly different. The excretion of urinary purine derivatives and estimated MN supply were also not significantly affected by GTW treatment. It is therefore concluded that GTW can be used as a protein source without any detrimental effects on the performance of lactating cows.

Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows

  • Zhan, Jinshun;Liu, Mingmei;Su, Xiaoshuang;Zhan, Kang;Zhang, Chungang;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1416-1424
    • /
    • 2017
  • Objective: The objective of this study was to examine the effects of alfalfa flavonoids on the production performance, immunity, and ruminal fermentation of dairy cows. Methods: The experiments employed four primiparous Holstein cows fitted with ruminal cannulas, and used a $4{\times}4$ Latin square design. Cattle were fed total mixed ration supplemented with 0 (control group, Con), 20, 60, or 100 mg of alfalfa flavonoids extract (AFE) per kg of dairy cow body weight (BW). Results: The feed intake of the group receiving 60 mg/kg BW of AFE were significantly higher (p<0.05) than that of the group receiving 100 mg/kg BW. Milk yields and the fat, protein and lactose of milk were unaffected by AFE, while the total solids content of milk reduced (p = 0.05) linearly as AFE supplementation was increased. The somatic cell count of milk in group receiving 60 mg/kg BW of AFE was significantly lower (p<0.05) than that of the control group. Apparent total-tract digestibility of neutral detergent fiber and crude protein showed a tendency to increase (0.05<$p{\leq}0.10$) with ingestion of AFE. Methane dicarboxylic aldehyde concentration decreased (p = 0.03) linearly, whereas superoxide dismutase activity showed a tendency to increase (p = 0.10) quadratically, with increasing levels of AFE supplementation. The lymphocyte count and the proportion of lymphocytes decreased (p = 0.03) linearly, whereas the proportion of neutrophil granulocytes increased (p = 0.01) linearly with increasing levels of dietary AFE supplementation. The valeric acid/total volatile fatty acid (TVFA) ratio was increased (p = 0.01) linearly with increasing of the level of AFE supplementation, the other ruminal fermentation parameters were not affected by AFE supplementation. Relative levels of the rumen microbe Ruminococcus flavefaciens tended to decrease (p = 0.09) quadratically, whereas those of Butyrivibrio fibrisolvens showed a tendency to increase (p = 0.07) quadratically in response to AFE supplementation. Conclusion: The results of this study demonstrate that AFE supplementation can alter composition of milk, and may also have an increase tendency of nutrient digestion by regulating populations of microbes in the rumen, improve antioxidant properties by increasing antioxidant enzyme activities, and affect immunity by altering the proportions of lymphocyte and neutrophil granulocytes in dairy cows. The addition of 60 mg/kg BW of AFE to the diet of dairy cows was shown to be beneficial in this study.