• 제목/요약/키워드: total internal reflection

검색결과 89건 처리시간 0.071초

에바네슨트 결합에 의한 국소 표면 플라즈몬 증대 효과 (Enhancement of the Localized Surface Plasmon by Evanescent coupling)

  • 이택성;김원목;변석주;이장교;이경석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.80-80
    • /
    • 2008
  • 바이오 센서 응용 연구에 많이 사용되는 금(Au) 나노 입자를 이용한 국소 표면 플라즈몬 공명(Localized Surface Plasmon Resonance, LSPR)에 의한 산란광을 검출하는데 주로 이용되는 암시야(dark field) 현미경 검출 방식에 관한 전산모사를 통하여 입사광의 입사 방식에 따른 산란광 세기를 정량적으로 분석하였다. 전산모사 기법으로는 국소 표면 플라즈몬 공명의 동역학적인 현상을 모사할 수 있는 유한차분시간영역(Finite Difference Time Domain, FDTD) 기법을 이용하였는데, 이러한 기법이 암시야 현미경 전산 모사에 유효함을 우선적으로 검증하였다. 암시야 현미경 검출 방식의 모사에서 입사 광원의 반사 입사 방식과 투과 입사 방식을 비교하였고, 각각의 방식에 서 입사광의 입사각에 따른 산랑광 세기를 계산하였다. 이러한 전산모사를 통하여 프리즘을 통한 내부 전반사(Total Internal Reflection, TIR) 방식에서 입사 광원의 임계각 근처에서 많이 발생하는 에바네슨트 장(evanescent field)을 결합하는 경우 산란광 세기가 증가함을 관찰하였고, 이러한 세기의 변화를 프레넬(Fresnel) 방정식에 의해 계산된 에바네슨트 장의 세기 분포와 비교 분석하였다.

  • PDF

Some characteristics of an interior explosion within a room without venting

  • Feldgun, V.R.;Karinski, Y.S.;Yankelevsky, D.Z.
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.633-649
    • /
    • 2011
  • The paper presents a study aimed at understanding some characteristics of an interior explosion within a room with limited or no venting. The explosion may occur in ammunition storage or result from a terrorist action or from a warhead that had penetrated into this room. The study includes numerical simulations of the problem and analytical derivations. Different types of analysis (1-D, 2-D and 3-D analysis) were performed for a room with rigid walls and the results were analyzed. For the 3D problem the effect of the charge size and its location within the room was investigated and a new insight regarding the pressure distribution on the interior wall as function of these parameters has been gained. The numerical analyses were carried out using the Eulerian multi-material approach. Further, an approximate analytical formula to predict the residual internal pressure was developed. The formula is based on the conservation law of total energy and its implementation yields very good agreement with the results obtained numerically using the complete statement of the problem for a wide range of explosive weights and room sizes that is expressed through a non-dimensional parameter. This new formula is superior to existing literature recommendations and compares considerably better with the above numerical results.

실리콘 수지 TIR 선형 렌즈 제작 및 365 nm 파장대역 UV LED 조사기 광원 개발 (Fabrication of Silicone Resin TIR Linear Lens and Development of 365 nm Wavelength UV LED Light Source)

  • 성준호;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.433-436
    • /
    • 2018
  • A total internal reflection (TIR) linear lens of size $190(W){\times}5(D){\times}2.1(H)mm^3$ has a directivity of $25^{\circ}$ and was made of a polydimethysiloxane (PDMS) silicone resin with a refractive index of 1.4 and a transmittance of 93% at 365 nm UV wavelength. A light source with a size of $190{\times}25.5mm^2$ was fabricated by installing a TIR linear lens on a chip on board (COB) type LED module mounted with a $1.1{\times}1.1mm^2$ size UV LED. The optical characteristics of the light source showed a maximum irradiation density of $3,840mW/cm^2$ at a working distance of 5 mm and a high uniformity of 91.6% over a $150{\times}25mm^2$ irradiation area. The thermal characteristics of the light source were measured at a supply current of 500 mA. The saturation temperature was reached after 30 min of operation, and measured to be $95^{\circ}C$.

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Indonesian plastic surgeons' attitude during early period of the COVID-19 pandemic

  • Prasetyono, Theddeus Octavianus Hari
    • 대한두개안면성형외과학회지
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2021
  • Background: This study aims to report how the practice of plastic surgeons and their attitude was during the first measure period of coronavirus disease 2019 (COVID-19) pandemic. Methods: A survey study was held among members of the Indonesian Association of Plastic Reconstructive and Aesthetic Surgeons during week 5 after the first report of COVID-19. A 10 multiple-choice questions (MCQs) and 1 essay covered key questions on the area of surgery and operating room, clinics, internal meeting, and consultation. The only open-ended question relates to the last MCQ addresses a future "flipped" medical practice. Results: Response rate was 45.6% among 228 members, with 89.4% did no practice or limited their service to emergency and urgent cases only. Only 1.9% kept their official meeting as usual, while the majority modified it. The practice in the operating theatre and clinic were also altered to comply with the measures; with 21.2% from the total respondents only allowed patients with exposure to come for visit after taking 14 days of self-quarantine. Teleconsultation was practiced by 50% of the respondents, while 41.3% agreed and 10.6% disagreed upon the future "flipped" medical practice. Conclusion: In general plastic surgeons have made supportive actions during the pandemic. Surgery was performed with all precautions at the utmost as a reflection of high alert of viral infection. Teleconsultation has been embraced via existing social media. Agreement upon the future "flipped" medical practice is reasonable. All in all, the actions were considered as most relevant.

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • 제20권4호
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Improvement of Light Extraction Efficiency of GaN-Based Vertical LED with Microlens Structure

  • Kwon, Eunhee;Kang, Eun Kyu;Min, Jung Wook;Lee, Yong Tak
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2013
  • Vertical LED (VLED) has been recognized as a way to obtain the high-power LED due to their advantages [1]. However, approximately 4% of the light generated from the active region is extracted, if the light extraction from side walls and back side is neglected because of Fresnel reflection (FR) and total internal reflection (TIR) [2,3]. In this study, the optical simulation of the VLED with the various microstructures was performed. Among them, the microlens having the diameter of 3 ${\mu}m$ and the height of 1.5 ${\mu}m$ shown the best result was chosen, and then, optimized microlens was formed on a GaN template using conventional semiconductor process. Various microstructures were proposed to improve the light extraction efficiency (LEE) of the VLED for the simulation. The LEE was simulated using LightTools based on a Monte Carlo ray tracing. The microstructures with hemisphere, cone, truncated and cylinder pattern having diameter of 3 ${\mu}m$ were employed on the top layer of the VLED respectively. The improvement of the LEE by using the microstructure is 87% for the hemisphere, 77% for the cone, 53% for the truncated, 21% for the cylinder, compared with the LEE of the flat surface at the reflectance of 85%. The LEE was increased by 88% at the height of 1.5 ${\mu}m$, compared with the LEE of the flat surface. We found that the microlens on the top layer is the most suitable for increasing the LEE. In order to apply the proposed microlens on n-GaN surface, we fabricated microlens on a GaN template. A photoresist array having hexagonal-closed packed microlens was fabricated on the GaN template. Then, optimization of etching the GaN template was performed using a dry etching process with ICP-RIE. The dry etching carried out using a gas mixture of Cl2 and Ar, each having a flow rate of 16 sccm and 10 sccm, respectively with RF power of 50 W, ICP power of 900 W and chamber pressure of 2 mTorr was the optimum etching condition as shown in Fig. 2(a).

  • PDF

마이크로 렌즈 어레이를 이용한 유기 발광 소자의 광추출 효율 향상에 관한 연구 (Improvement of Outcoupled Light Efficiency of Organic Light-emitting Diodes with a Use of Microlens Array)

  • 김혜숙;황덕현;홍진웅;송민종;한원근;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.307-311
    • /
    • 2014
  • Because of a waveguiding effect and total internal reflection caused by a difference in refractive indices, only 20% of generated light is emitted to the air and the rest is trapped or absorbed in the device. An improvement of outcoupled efficiency of organic light-emitting diodes was studied using a microlens array. Mold of microlens array was fabricated by using photo-lithography with the AZ9260 photoresist, and the microlens array was formed onto the glass substrate using the UV curing agent named ZPU13-440. Device structure consists of microlens/glass/ITO/TPD/$Alq_3$/LiF/Al. It was found that there is an improvement of external quantum efficiency by about 20% at the same current density for the device with the microlens array compared to that of the reference one. Simulated outcoupled efficiency shows the improvement by about 20% for the device with the microlens array compared to that of the reference one. These results are consistent with the experimental ones.

플라즈모닉스 현상을 이용한 전반사 기반 다층 유전체 박막 센서의 특성 분석 (Characteristics Analysis of Total Internal Reflection-based Dielectric Multi-layer Sensor Using Plasmonics Phenomena)

  • 김홍승;이태경;김두근;정유라;오금윤;이병현;기현철;최영완
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.516-520
    • /
    • 2012
  • In this paper, we have theoretically analyzed and designed a dielectric multi-layer sensor with a SPR (surface plasmon resonance) using analytical calculation and FDTD (finite difference time-domain) methods. The proposed structure is composed of periodic layer and thin metal film. It has many advantages. One of that is a high sensitivity of the SPR. Another is a high Q-factor of the characteristics in the PhC (photonic crystals) micro-cavity structure. The incident light has double resonance characteristics, because the filtered light by PhC structure, dielectric multi-layer, is met the thin metal film for SPR effect. We have also observed the change of resonance characteristics according to the variation of effective index on the metal film.

표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작 (Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition)

  • 박형주;박정원;이대식;표현봉
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.