• Title/Summary/Keyword: total amylase activity

Search Result 286, Processing Time 0.027 seconds

Usage of Enzyme Substrate to Protect the Activities of Cellulase, Protease and α-Amylase in Simulations of Monogastric Animal and Avian Sequential Total Tract Digestion

  • Wang, H.T.;Hsu, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1164-1173
    • /
    • 2006
  • Cellulase from Aspergillus niger, (${\alpha}$-amylase from Bacillus sp. and protease from Bacillus globigii were used as enzyme sources in this study to examine how their respective substrates protect them in two kinds of simulated gastrointestinal tract digesting processes. Avian total digest tract simulation test showed that filter paper, Avicel and cellulose resulted in 7.7, 6.4 and 7.4 times more activity than of unprotected cellulose, respectively. Protease with addition of casein, gelatin or soybean protein showed no significant protection response. Starch protected amylase to be 2.5 times activity of the unprotected one. Monogastric animal total tract digestion simulation test showed that filter paper, Avicel and cellulose resulted in 5.9, 9.0 and 8.8 times activity of unprotected cellulase, respectively. Casein, gelatin and soybean protein resulted in 1.2, 1.3 and 2.0 times activity of unprotected protease, respectively. Starch did not protect amylase activity in monogastric animal total tract simulation. Protection of mixed enzymes by substrates in two animal total tract simulation tests showed that filter paper in combination with soybean protein resulted in 1.5 times activity of unprotected cellulose, but all substrates tested showed no significant protection effect to protease. Soybean protein and starch added at the same time protected the amylase activity to be two times of the unprotected one. Test of non-purified substrate protection in two animal total digest tract simulation showed that cellulase activity increased as BSA (bovine serum albumin) concentration increased, with the highest activity to be 1.3 times of unprotected enzyme. However, BSA showed no significant protection effect to protease. Amylase activity increased to 1.5 times as BSA added more than 1.5% (w/v). Cellulase activity increased to 1.5 times as soybean hull was added higher than 1.5%. Amylase had a significant protection response only when soybean hull added up to 2%. Protease activity was not protected by soybean hull to any significant extent.

Characterization of $\alpha$-amylase, Total Alkaline Pretense, Trypsin and Triacylglycerol-lipase Activity of the Euryhaline Rotifer Brachionus rotundiformis (해수산 rotifer, Brachionus rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin 및 triacylglycerol-lipase 활성 특성)

  • Kwon O-Nam;Park Heum-Gi
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.245-251
    • /
    • 2005
  • This study was investigated the condition of their maximum activity to assay the enzymes of rotifer, Brachionus rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin and TG-lipase activities of rotifer were higher and more sensitive in phosphate-NaOH buffer than Tris-HCl buffer. $\alpha$-amylase, trypsin and TG-lipase activities were appeared the maximum at pH 8.0, and total alkaline protease activity showed the maximum activity at pH 7.0. $\alpha$-amylase activity showed the highest activity at $40^{\circ}C$, and total alkaline protease and trypsin activities were assayed the highest at $55{\~}60^{\circ}C$. However, TG-lipase activity was appeared the highest at $25{\~}30^{\circ}C$. The optimum substrate concentration of enzyme activity of a-amylase, total alkaline protease, rypsin and TG-lipase were $3.5\%$ starch, $\0.6%$ azo-casein, $87.5{\mu}M$ BApNA and 81.2 mM olive oil, respectively. The optimum reaction time of enzyme activity of $\alpha$-amylase, total alkaline protease, trypsin and TG-lipase were increased up to 40, 60, 30 and 25 min., respectively. The data obtained in this study could be used for the digestive enzyme research of rotifer, B. rotundiformis.

Total Sugars, $\alpha$-amylase Activity, and Germination after Priming of Normal and Aged Rice Seeds

  • Lee, Suk-Soon;Kim, Jae-Hyeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.108-111
    • /
    • 2000
  • Osmoconditioning and hardening effects for the seed germination of normal and naturally aged rice seeds were studied through analyzing the total sugars and $\alpha$-amylase activity. The normal seeds which used to have high germination rate accelerated germination with the osmoconditioning at the suboptimal temperature of 17$^{\circ}C$. On the other hand, the aged seeds did not affect germination rate at $25^{\circ}C$, while increased germination rate and accelerated germination a little at 17$^{\circ}C$, Hardening of aged seeds increased germination rate by 10-15% compared with control seeds at both 17 and $25^{\circ}C$ and accelerated germination. Total sugar content and $\alpha$-amylase activity of normal seeds were higher than did aged seeds. The aged seeds with treatment of osmoconditioning and hardening increased total sugar content and $\alpha$--amylase activity, but hardening was more effective than osmoconditioning. The $\alpha$--amylase activity was positively correlated with the total sugar content and germination rate.

  • PDF

The activity of ${\alpha}$-amylase and ${\alpha}$-glucosidase as anti-diabetic function

  • Kim, Misook;Kim, Eunji;Kwak, Han Sub;Jeong, Yoonhwa
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.602-606
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: We investigated total 26 ingredients of Saengshik which will be commercially produced as an anti-diabetic dietary supplement. SUBJECTS/METHODS: Thirteen vegetables, nine cereals, three legumes and one seed were extracted with aqueous ethanol for 2 h at $60^{\circ}C$, and evaluated for their inhibitory effects against ${\alpha}$-amylase and ${\alpha}$-glucosidase and for total phenolic and flavonoid contents. RESULTS: All ingredients inhibited ${\alpha}$-amylase activity except cabbage. Strong inhibitory activity of ${\alpha}$-amylase was observed in leek, black rice, angelica and barley compared with acarbose as a positive control. Stronger inhibition of ${\alpha}$-glucosidase activity was found in small water dropwort, radish leaves, sorghum and cabbage than acarbose. All Saengshik ingredients suppressed ${\alpha}$-glucosidase activity in the range of 0.3-60.5%. Most ingredients contained total phenols which were in the range of 1.2-229.4 mg gallic acid equivalent/g dried extract. But, total phenolic contents were not observed in carrot, pumpkin and radish. All ingredients contained flavonoid in the range of 11.6-380.7 mg catechin equivalent/g dried extract. CONCLUSIONS: Our results demonstrate that Saengshik containing these ingredients would be an effective dietary supplement for diabetes.

Influence of Rumen Escape Starch on α-Amylase Activity in Pancreatic Tissue and Small Intestinal Digesta of Lambs

  • Xu, M.;Yao, J.H.;Wang, Y.H.;Wang, F.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1749-1754
    • /
    • 2006
  • Two slaughter experiments were conducted to determine the effects of rumen escape starch, by altering dietary starch concentration and corn particle size, on ${\alpha}$-amylase activity in the pancreas and the small intestinal digesta of lambs. In experiment 1, 18 wether lambs (28.5${\pm}$1.6 kg) were fed low, medium or high starch diets for 35 d and slaughtered. Dietary starch concentrations linearly increased rumen escape starch (p<0.05). Pancreatic ${\alpha}$-amylase activity was lower (p<0.05) in lambs fed the low starch diet. When expressed per gram of digesta, ${\alpha}$-amylase activity was lower in lambs fed the low starch diet. However, expressed as total activity, ${\alpha}$-amylase in the digesta was greater in lambs fed the medium starch diet. In experiment 2, 12 wether lambs (23.5${\pm}$0.3 kg) were fed diets with finely cracked corn, coarsely cracked corn and whole corn. These dietary treatments continued for 35 d before tissue collection. Rumen escape starch increased with increasing corn particle size (p<0.05). ${\alpha}$-amylase activity in the pancreas and the small intestinal digesta was significantly greater (p<0.05) in lambs fed the coarsely cracked corn. These data suggest that increasing rumen escape starch results in a quadratic increase in total ${\alpha}$-amylase activity in the pancreas and the small intestinal digesta. Maximum ${\alpha}$-amylase activity is reached when rumen escape starch is about 100-120 g/d in 25-30 kg lambs.

Cloning of the Entire Gene Encoding the 140-kDa $\alpha$-Amylase of Lactobacillus amylovorus and Expression in Escherichia coli and Lactococcus lactis

  • Jeong, Jong-Jin;Kim, Tea-Youn;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.293-298
    • /
    • 1997
  • A 4.6-kb HindIII fragment encompassing the complete 140-kDa ${\alpha}$-amylase gene of Lactobacillus amylovorus B 4540 was cloned into pBR322 by the shot gun method. Southern blotting and restriction mapping for the insert were performed. The recombinant 9.0-kb plasmid, pFML1, conferred ${\alpha}$-amylase activity to E. coli and Lactococcus lactis hosts when introduced by electroporation. SDS-PAGE and zymography confirmed the production of 140-kDa ${\alpha}$-amylase and its proteolytic degradation products with enzyme activity in transformants. Total ${\alpha}$-amylase activity of E. coli $DH5{\alpha}$ cells harboring pFML1 was 1.8 units and most activity was detected from cell pellets. Total enzyme activity of L. lactis subsp. lactis MG1363 transformant was five to ten-fold lower than that of E. coli cell but more than half of the activity was detected in the culture supernatant.

  • PDF

Studies on the Microbial Population and the Amylase Activity of the Forest Soil (삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구)

  • Lee, Hee-Sun;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 1994
  • Soil condition, total number of bacteria, soil amylase activity and microbial biomass $(CO_2-C)$ were measured at soil of different forest types. And the difference of the allelopathic effect was determined between fresh leaf extract of Quercus acutissima and Pinus rigida to the bacteria isolated from soil of different forest types. 1. Total number of bacteria in Carpinus laxiflora forest soil was 4~7 times larger than that in pinus desiflora forest soil. 2. Soil amylase activity was positively correlated with total number of soil bacteria and soil organic matter content. The amylase activity at F layer was 4~5 times larger than that at H layer, and that at H layer was 2~4 times larger than that at A layer. 3. Seasonal changes of microbial biomass showed a peak in summer, and vertical distribution of microbial biomass decreased with increasing soil depth. The microbial biomass in Pinus densiflora forest soil was larger than that in Quercus serrata forest soil. 4. Fresh leaf extract of Pinus rigida and Quercus acutissima showed an acceleration or inhibition effect on the growth of soil bacteria, and that of !. acutissima inhibited larger number of soil bacterial strains than that of P. rigida. 4.2% and 25% of soil bacterial strains isolated from soil of P. rigida and Q. acutissima forests were inhibited by fresh leaf extract of P. rigida and Q. acutissima, respectively.

  • PDF

Identification and Characterization of Useful Fungi with ${\alpha}$-Amylase Activity from the Korean Traditional Nuruk

  • Kim, Hye-Ryun;Kim, Jae-Ho;Bai, Dong-Hoon;Ahn, Byung-Hak
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.278-282
    • /
    • 2011
  • The objective of this study was to find useful fungi with ${\alpha}$-amylase activity from the Korean traditional nuruk for the quality of traditional Korean alcoholic beverage. In this study, 165 samples of traditional nuruk were collected from 170 regions throughout Korea and the fungi were isolated to a total of 384 strains. In order to investigate the effect of microflora on nuruk, ${\alpha}$-amylase activity, saccharogenic power (SP), starch hydrolysis activity and acid producing activity were evaluated. Ten strains were selected by ${\alpha}$-amylase activity, which ranged from 458.47 to 1,202.75 U/g. The size of the discolored zone for the starch hydrolysis activity of each fungus ranged from 0.3 to 2 cm. The SP of the 10 strains ranged from 228.8 to 433.4 SP. Of the 10 stains, three were identified as Aspergillus oryzae, two as Aspergillus flavus, two as Lichtheimia sp., one as Rhizopus oryzae and two as other strains. The total aflatoxins present in the nuruks were examined using enzyme-linked immunosorbent assay. The 10 nuruks had less than 1.11 ppb of aflatoxins.

Effect of Ginseng Saponin on Bacterial α-Amylase Activity (인삼(人蔘) Saponin이 세균(細菌) α-Amylase 활성(活性)에 미치는 영향(影響))

  • Do, Jae Ho;Kim, Sang Dal;Joo, Hyun Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 1985
  • In order to investigate the biological activity of ginseng saponins, the effects of ginseng saponins on the reaction catalyzed by bacterial a-amylase were studied and the results obtained were summerized as follows. Bacterial ${\alpha}$-amylase activity was increased by the addition of protopanaxadiol (diol), protopanaxatriol (triol) and total saponin. Preincubation of ${\alpha}$-amylase with diol saponin at $40^{\circ}C$ for 3 min increased ${\alpha}$-amylase activity to the degree of 120%. In the protective effect on the heat denaturation of the enzyme, triol saponin protected the heat denaturation for 5 min at $60^{\circ}C$, but diol saponin accelerated the heat denaturation. The hydrolyzates of diol and triol saponin increased the enzyme activity more than the intact diol and triol saponin. In the catalysis system of bacterial ${\alpha}$-amylase, the addition of diol and triol saponin reduced the substrate inhibition in the presence of high concentration of the substrate.

  • PDF

Polyphenolic Contents and Antioxidant Activities of Underutilized Grape (Vitis vinifera L.) Pomace Extracts

  • Kabir, Faisal;Sultana, Mosammad Shahin;Kurnianta, Heri
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.210-214
    • /
    • 2015
  • Grape pomace is an abundant source of underutilized winery by-products. Polyphenols were extracted from grape pomace using cellulase and gluco-amylase enzymes. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu's assays were used to measure antioxidant activity and total polyphenolic contents. Both cellulase, and gluco-amylase digested grape pomace showed efficient radical scavenging activity. In addition, the total polyphenolic contents of cellulase digested grape pomace showed lower concentrations were effective compared to higher concentrations, whereas glucoamylase enzyme did not show remarkable variations. The DPPH radical scavenging activity and total polyphenolic contents were significantly higher in the cellulase digested grape pomace compared to the gluco-amylase digested and the not digested grape pomace. It is notable that enzymatic digestions were efficient for extracting polyphenols from grape pomace. The underutilized grape pomace polyphenols can be further used for food safety as a natural antioxidant.