• Title/Summary/Keyword: torsional shear test

Search Result 85, Processing Time 0.024 seconds

Identifying Strain Associated with Damping Ratio from Tosional Test Using a Combined Damping Model (복합감쇠모델을 이용한 비틂 시험기로 얻은 감쇠비에 상응하는 변형률 산정)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. Particularly, the modified equivalent radius approach is adequate to when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models in evaluating damping ratio. Results showed that using a single value of equivalent radius ratio based on conventional equivalent radius approach is not appropriate. A new model was developed to consider the soil damping behavior at small strains as well as hysteretic damping and it was attempted to determine adjustments are required in evaluating strain associated damping when combining the two damping components.

Dynamic Response of Unreinforced Masonry Building (비보강 조적조의 동적 거동)

  • Kim, Nam-Hee;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.1-14
    • /
    • 2004
  • The seismic behavior of a 1/3-scale model of a two-story unreinforced masonry (URM) structure typically used in constructing low-rise residential buildings in Korea is studied through a shaking table test. The purposes of this study are to investigate seismic behavior and damage patterns of the URM structure that was not engineered against seismic loading and to provide its experimental test results. The test structure was symmetric about the transverse axis but asymmetric to some degrees about longitudinal axis and had a relatively strong diaphragm of concrete slab. The test structure was subjected to a series of differentlevels of earthquake shakings that were applied along the longitudinal direction. The measured dynamic response of the test structure was analyzed in terms of various global parameters (i.e., floor accelerations, base shear, floor displacements and storydrift, and torsional displacements) and correlated with the input table motion. Moreover, different levels of seismic performance were suggested for performance-based design approach. The results of the shaking table test revealed that the shear failure was dominant on a weak side of the 1stfloor while the upper part of the test model remained as a rigid body. Also, it was found that substantial strength and deformation capacity existed after cracking.

An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck (초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가)

  • Yoon, Ki Yong;Kim, Sang Seup;Han, Deuk Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2008
  • A simple steel-concrete composite deck is developed for preventing the lateral torsional buckling of girders that are under construction and for reducing the term of works using H-shaped rolled beams as bridge girders. A new type of shear connectors is also developed for the composite behavior between a simple steel-concrete composite deck and the rolled beams by the connecting conditions between the deck and the girders. One is a connector bolt that is lengthened and split or tightened with two nuts and the other is an I-shaped rolled beam welded on a steel plate with a number of holes punched through the web. In this study, to estimate the shear strength of those shear connectors the push-out tests are performed and the test results are compared with that of the previous studies and the codes. The result of the push-out tests of the connector bolts showed that the shear performance is similar to that of the stud connector and revealed that the equation for the shear strength in the Korean Specification of Highway Bridge overestimates the shear capacity of the connector bolt whose diameter is larger than 19mm. From the push-out tests of punched I-shaped rolled beams with varying welding amounts, with the small amount of welding, shear capacity is governed by the shear capacity of welding. On the other hand, shear capacity is governed by the size of the punched I-shaped rolled beams, regardless of the amount of welding.

Dynamic Deformational Characteristics of Subgrade Soils with Variations of Capillary Pressure and Water Content (모관흡수력 및 함수비에 따른 노상토의 동적변형특성 연구)

  • 김동수;김민종;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.109-122
    • /
    • 2002
  • The water content of soil near the ground subgrade varies seasonally, and dynamic deformational characteristics of soil are affected by the variation of water content. Contrary to previous studies which used various specimens of different compaction moisture contents, the influences of water content and capillary Pressure on dynamic deformational characteristics of soil were investigated using the given specimen controlling the matric suction. RC/TS(resonant column and torsional shear) testing equipment was modified so that it can control water content with changing capillary pressure(matric suction). RC/TS tests were performed on subgrade soil collected in the KHC(Korea Highway Corporation) test road. In the field, the cross-hole tests were performed and the water contents were measured at the same site to verify the feasibility and applicability of RC/TS test results. As water content decreased, the tendency of increasing shear moduli in field was well matched with laboratory test results.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Calculation of Damping Ratio Using Non-Linear Soil Models and Comparison between Measured and Predicted Data (흙의 비선형 모델을 이용한 감쇠비 산정 및 비교)

  • Lee, Hyoung-Kyu;Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • Several theoretical soil nonlinear models to predict damping ratio, which is one of the typical dynamic properties of soils, it is impractical to predict damping ratio. The resonant column and torsional shear test(RC-TS) is used to represent the dynamic behavior of soils from intermediate to medium shear strains. A limitation of RC-TS is measure precise shear strain in large strains and the modified equivalent radius($R_{eq}$) was obtained using both modified hyperbolic model and Ramberg-Osgood model. Bonneville clays were tested using RC-TS test to obtain rotation and torque. The measured rotation and torque were then compared with calculated rotation and torque using curve-fitting method. Then, the nonlinear soil model parameters were obtained and the equivalent radius was calculated using the model parameters.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

Evaluation of Characteristics and Reliability of an Auger Crane with Built-in Hydraulic Extender (유압식 확장기가 내장된 오거 크레인의 특성 및 신뢰성 평가)

  • Kim, Jeom-Sik;Kwon, Sin-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • This study evaluated the characteristics and reliability of an auger crane with a built-in hydraulic extender. The field test of the hydraulic extender was performed with the hydraulic lines filled with hydraulic fluid and free of air. The pressure generated during the test was measured with a digital pressure gauge. The crane was considered to have undergone one cycle of the excavation process after it had performed excavation under three conditions at the same location. This process was performed three times in total. From the results of the excavation using the hydraulic extender, it was found that the maximum pressure and torque measured were 19.9 [MPa] and 895.4 [$kgf{\cdot}m$], respectively. The rotation force of the auger crane generated at this time signifies a horizontal force. If the excavation diameter of the auger crane is increased, the rotation speed is reduced causing the circumferential speed to also be reduced. The torsional shear stress of the extendable auger crane was calculated to be approximately 23.5 [MPa]. However, the rotation shaft material used for this system was carbon steel for machine structural use (SM45C). Since the minimum torsional yield stress is greater than 150 [MPa] according to KS D 3752, it means the equipment has secured a safety factor greater than 6. Therefore, it was found that when performing work using the extendable auger crane, it exhibited no problems with the safety and reliability of its shaft.

Geometrically Non linear Analysis of Space Frames Including Shear Deformation Effects (전단변형(剪斷變形)을 고려(考慮)한 공간(空間) 뼈대구조(構造)의 기하학적(幾何學的)인 비선형(非線形) 해석(解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.39-49
    • /
    • 1993
  • In order to present the geometrically nonlinear F.E. formulation of space frames, two beam/column elements including the effects of transverse shear deformation and bending stretching coupling are developed. In the case of the first element (Finite segment method), the tangent stiffness matrices are derived by directly integrating the equilibrium equations, whereas in the case of the second element (Finite element method) elastic and geometric stiffness matrices are calculated by using the hermitian polynomials including shear deformation effect as the shape function. Both elements possess the usual twelve degrees of freedom. Also, the bowing function including shear deformation effects is obtained in order to account for the effect of shortening of member chord length due to the bending and torsional behavior. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.