• Title/Summary/Keyword: torsional shafting

Search Result 77, Processing Time 0.025 seconds

Transient Torsional Vibration Response due to Ice Impact Torque Excitation on Marine Diesel Engine Propulsion Shafting (선박용 디젤엔진 추진축에서 빙 충격 토크 기진에 의한 과도 비틀림 진동 응답)

  • Barro, Ronald D.;Eom, Ki Tak;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.321-328
    • /
    • 2015
  • In recent years, there has been an increasing demand to apply the new IACS(International Association of Classification Societies) standards for ice and polar-classed ships. For ice-class vessel propulsion system, the ice impact torque design criterion is defined as a periodic harmonic function in relation to the number of the propeller blades. However, irregular or transient ice impact torque is assumed to occur likely in actual circumstances rather than these periodic loadings. In this paper, the reliability and torsional vibration characteristics of a comparatively large six-cylinder marine diesel engine for propulsion shafting system was examined and reviewed in accordance with current regulations. In this particular, the transient ice impact torque and excessive vibratory torque originating from diesel engine were interpreted and the resonant points identified through theoretical analysis. Several floating ice impacts were carried out to evaluate torque responses using the calculation method of classification rule requirement. The Newmark method was used for the transient response analysis of the whole system.

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

Design and Its Influence Evaluation of Gear System Considering Vibratory Torque (진동토크를 고려한 기어시스템의 설계 및 영향 평가)

  • 이돈출;김지근;김태언;김상환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.316-323
    • /
    • 2003
  • The gear system is commonly applied in the marine propulsion shafting system using the diesel engine with the power take off/in system and it also is necessary to reduce propeller revolution increasing the propulsion efficiency. The diesel engine has the advantage more than other thermal engines in high thermal efficiency and mobility. But the large vibratory torque which induced by higher combustion pressure is transmitted to these gears. In this paper, the surface durability and bending stress of gear system considering vibratory and transient torque is evaluated by ISO and AGMA regulation. And the influence of these in gear design is investigated with the theoretical analysis and onboard measurement result of torsional vibration.

  • PDF

An Experimental Study of T-mode Vibration on the Diesel Power Plant (디젤 발전소의 T-mode 진동에 관한 실험적 고찰)

  • Lee, D.C.;Nam, T.K.;Bae, Y.C.;Kim, Y.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.411-416
    • /
    • 2005
  • Nowadays, diesel power plant using low speed two stroke diesel engine is widely used in islands and restricted areas. Considerations were given to its benefit of high thermal efficiency, reliability and durability compared to the other prime movers. However, various types of engine vibration affect neighboring buildings to their structural vibration. For this, diesel power plant are held liable for the troubles caused by these vibration. These are mainly due to the X- and H-type engine vibrations which we excited by the X- and H- guide force moment. Authors have identified a structural vibration of new pattern called ‘T-mode vibration’ due to the torsional vibration of shafting system. In this paper, T-mode vibration is analyzed through an experimental method based on the global vibration measurement.

  • PDF

A Study on the Axial Vibration Characteristics of the Super Large 2 Stroke Low Speed Diesel Engine with 14 Cylinders (14 실린더를 갖는 초대형 저속 2행정 디젤엔진의 종진동 특성에 관한 연구)

  • Lee, D.C.;Kim, T.U.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.376-381
    • /
    • 2009
  • The increasing needs for higher cargo capacity in the container vessels' fleet has led to ship builder's demand for higher power output rating engine to meet the propulsion requirement, thus, leading to the development of super large two stroke low speed diesel engines. This large sized bore engines with more than 12 cylinders are capable of delivering power output up to more than 100,000 bhp at maximum continuous rating. The thrust variation force due to axial vibration occurring in propulsion shafting of these ships are transmitted to ship structure via thrust bearing. This force may vibrate the super structure of ship in the fore-aft direction and the fatigue strength of crank shaft can be decreased by additional bending stress increase in crank shaft pin and journal. In this paper, the axial vibration of propulsion shafting system on the 14RT-flex96C super large diesel engine with 14 cylinders is identified by theoretical analysis and vibration measurement.

  • PDF

Control of torsional vibration for propulsion shafting with delayed engine acceleration by optimum design of a viscous-spring damper (점성-스프링 댐퍼 최적화 설계를 이용한 엔진 증속지연 특성을 갖는 추진축계 비틀림진동 제어)

  • Kim, Yang-Gon;Hwang, Sang-Jae;Kim, Young-Hwan;Kim, Sang-Won;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.580-586
    • /
    • 2016
  • The ultra-long stroke engine was developed to generate greater power at lower speeds than previous designs to enhance the propulsion efficiency. The torsional exciting force, on the other hand, was increased significantly. Therefore, it is possible to control the torsional vibration of its shaft system equipped with the fuel efficient ultra-long stroke engine by adopting a damper although the torsional vibration could be controlled adequately by applying tuning and turning wheels on the engine previously. In this paper, the dynamic characteristics of a viscous-spring damper used to control the torsional vibration of the corresponding shaft system are reviewed and then examined to determine what vibration characteristics might be used to optimize the viscous-spring damper. In some cases, operators of eco-ships have recently experienced the problem of delayed RPM acceleration. It has been suggested that the proper measures for controlling the torsional vibration in the shaft system should involve adjusting the design parameters of its damper determined by the optimum damper design theory to avoid the fatigue damage of shafts.

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성 커플링의 동특성과 적응성)

  • Lee, D.C.;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.90-95
    • /
    • 2008
  • Medium and high speed marine diesel engines have been widely used as prime mover in small car ferries and fishing vessels with reduction gear. These propulsion shafting system should be installed and matched the elastic coupling between engine and reduction gear to isolate the vibratory torque. In this paper, the elastic dynamic characteristics of coupling with rubber type circular segments is confirmed by the theoretical analysis using the FEM and the hydraulic exciting test at shop. And its adaptation is investigated in the torsional vibration test in factory shop.

  • PDF

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

A study of Axial Vibration of Two Stroke Low Speed Diesel Engine On the Diesel Power Plant (육상 디젤 발전소용 저속 2행정 디젤엔진의 종진동에 관한 연구)

  • Lee, D.C.;Ko, J.Y.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1816-1822
    • /
    • 2000
  • The maximum and mean indicated pressure of two stroke low speed diesel engine has been continuously increased with a view of increasing engine power and also reducing fuel consumption. As a result, axial excitation has been highed comparing to that of the previous and so in standard axial vibration damper is applied to all two stroke low speed diesel engine at the free end of crankshaft. Though many studies were carried out for marine use, few has been made for diesel power plant because there was little demand for power plant. Nowadays, diesel engine is much to be used for many benefits and so in this paper, the optimum design of axial vibration on the 65 MW diesel power plant with 9K80MC-S engine was carried out. And the axial-torsional coupled vibration of this shafting system is identified by theoretical analysis and vibration measurement.

  • PDF

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성커플링의 동특성과 적응성)

  • Lee, D.C.;Barro, Ronald D;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-351
    • /
    • 2011
  • Medium and high speed marine diesel engines with reduction gear have been widely used as prime mover in small car ferries and fishing vessels. The elastic coupling should be installed and complemented the propulsion shafting system to isolate the vibratory torque between engine and reduction gear. In this paper, the dynamic characteristics of elastic coupling with rubber type circular segments is confirmed by theoretical analysis using the FEM and the hydraulic excitation test at shop. Further adaptation was investigated with the torsional vibration test at diesel engine factory shop.