• Title/Summary/Keyword: torsional member

Search Result 53, Processing Time 0.021 seconds

Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load (수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델)

  • Park Young Mi;Cho Kyung Hyun;Han Sang Whan;Lee Li Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

Safety Evaluation of Super Structure Member of Modular Pier In Coastal Zone (연안역 조립식 보도 잔교 상부구조 요소부재의 안전성 검토)

  • Yoo, Sang-Ryang;Park, Jong-Sup;Yoon, Ki-Yong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.848-851
    • /
    • 2012
  • 본 연구에서는 서해안의 지역적 특성을 고려한 말뚝지지형 조립식 잔교의 상부구조를 구성하는 요소 부재인 주거더 ㄷ형강과 가로보 및 가로거더 H형강에 대해 횡-비틀림 좌굴(Lateral-Torsional Buckling) 여부와 부재별 좌굴강도 값을 유한요소해석을 통해 산정하였으며, 산정한 좌굴강도 값과 부재에 작용하는 설계하중에 대한 안전성 검토를 하였다.

  • PDF

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Effects of modelling on the earthquake response of asymmetrical multistory buildings

  • Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.211-225
    • /
    • 1994
  • Responses of asymmetrical multistorey buildings to earthquakes are obtained by quasi-static code approach and real time dynamic analysis, using two different structural models. In the first model, all vertical members are assumed to be restrained at the slab levels and hence their end rotations, about horizontal axes, are taken as zero. In the second model this restriction is removed and the rotation is assumed to be proportional to the lateral stiffness of the member. A simple microcomputer based procedure is used in the analyses, by both models. Numerical examples are presented where results obtained from both the models are given. Effects of modelling on the response of three buildings, each with a different type and degree of asymmetry, are studied. Results for deflections and shear forces are presented and the effects of the type of model on the response are discussed.

Stress Analysis of Large Commercial Vehicle Frames with Bolted Joints (볼트 체결된 대형 상용차 프레임의 응력해석)

  • Yong-Kuk Park;Jin-Gon Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2004
  • Structural failures, such as crack initiation, often arise near the bolted parts of the side member and trunnion bracket in some commercial vehicles. The purpose of this paper is: 1) establishment of a simple and practical bolted joint modelling technique and 2) determination of the key design variables for design improvement based on numerical experiments. Once the bolted joint modelling technique is established through experimental verification, the key design variables must be identified in order to alleviate the level of the stress concentration near the problem region. Numerical results indicate that the torsional rigidity of the frame cross-section should be increased to reduce the level of the maximum stress at the actual crack initiation location.

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections (비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석)

  • Park, Hyo Gi;Kim, Sung Bo;Kim, Moon Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.153-165
    • /
    • 1999
  • In order to trace the lateral-torsional post-bucking behaviors of thin-walled space frames with non-symmetric cross sections, a geometrically non-linear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for non-symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of thin-walled space frame element are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines and incremental member forces.

  • PDF

Study on Modeling and Arrangement of Link-Shoes for Torsional Control of S-shaped Pedestrian Cable-Stayed Bridge (S자형 보도사장교의 비틀림 제어를 위한 링크슈의 모델링과 배치방법 연구)

  • Ji, Seon-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.210-218
    • /
    • 2019
  • Recently, cable-stayed bridges have been attempting to apply bold and experimental shapes for aesthetic and originality. In the case of bridges that have no similar cases, deep understanding and verification of analytical modeling is needed. S-shaped curved pedestrian cable-stayed bridge is always twisted because the cable is arranged on one side of the inverted triangular truss girder. In order to suppress the torsion, the Link-shoes are arranged at the left and right top members with reference to the Bearing placed at the mid-bottom member. The first research is related to the modeling method of Link-Shoe and Diaphram. In order to accurately reflect the transverse structural system and the torsional stiffness, it was necessary to model the Link-Shoe and the Diaphram directly rather than indirectly using the stiffness of the Bearing. The second study is related to the lateral arrangement of Bearing and Link-Shoes. Method 1 is to place in order of Link-shoe, Bearing, and Link-shoe from outside the curve radius. Method 2 is place to in order of Bearing, Bearing, and Link-shoe. In method 2, compared to method 1, the stress in the outer top member was larger and the stress in the inner one was decreased. It is analyzed that the stress adjustment is possible according to the lateral arrangement of Bearing and Link-Shoe.

The Optimum Structural Design of the High-speed Surface Effect Ship using Composite Materials - Minimum Weight Design (복합재료 쌍동형 초고속선의 최적 구조 설계 - 최소 중량 설계)

  • Chang-Doo Jang;Ho-Kyung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.94-103
    • /
    • 1998
  • Recently, many researches are carried for high-speed and light craft. In this study, the optimum structural design procedure and the computer program are developed to minimize the hull weight of SES(Surface Effect Ship) built of composite materials. Three types of composite materials-Sandwich, Single Skin and Hybrid type- are considered and the efficiency of each type is investigated. In design process, the optimum design of main members is performed at first considering longitudinal strength. And then, the transverse member design is performed considering torsional strength SSDP(Structural Synthesis Design program) of U.S. Navy is adopted for design algorithm and DnV classification nile for design loads and strength criteria. For optimum structural design, ES 1+1 optimization technique is used.

  • PDF

Elastic Local Buckling of Orthotropic Open Section Compression Members with Asymmetric Edge Stiffeners (비대칭 연단보강재가 설치된 직교이방성 개방단면 압축재의 탄성국부좌굴)

  • 윤순종;정상균
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents the results of an analytical investigation pertaining to the elastic local buckling behavior of asymmetric edge stiffened orthotropic open section structural member under uniform compression. The asymmetric edge stiffener is considered as a beam element neglecting its torsional rigidity. We suggested the analytical model of asymmetric edge stiffeners which is composed of a strip of flange plate, equal width of edge stiffener, and a plate attached at the flange end, and computed the moment of inertia of the stiffener about an axis through the centroid of the ensuing cross-section. Using the derived equation, the local buckling coefficients of asymmetrically edge stiffened orhtotropic I-section columns are predicted and the results are presented in a graphical form.

  • PDF