• 제목/요약/키워드: torsion moment

검색결과 90건 처리시간 0.028초

탄성방정식을 이용한 3경간 연속곡선교의 영향선에 관한 연구 (Influence Line of Three- span Continuous Curved Box-Girder Bridge using Elastic Equation)

  • 장병순;장준환;김수정
    • 한국전산구조공학회논문집
    • /
    • 제14권4호
    • /
    • pp.423-434
    • /
    • 2001
  • 본 논문은 도로의 선형이 곡선일때, 곡선상에 설치되는 곡선교를 해석함에 있어 에너지법에 기초하여 휨과 순수비틂 효과를 고려한 탄성방정식을 이용한다. 이 탄성방정식은 부정정 구조인 연속곡선박스거더의 정역학적 부정정력을 최소 일의 원리를 적용하여 구한다. 곡선박스거더에 수직단위하중과 단위토크를 작용시켜 전단력, 휨모멘트, 순수비틂모멘트, 그리고 처짐과 회전각에 대한 영향선을 구하며, 실제 하중이 작용할 때 곡선박스거더의 부재력을 구할 수 있도록 하였다.

  • PDF

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

REAL POLYHEDRAL PRODUCTS, MOORE'S CONJECTURE, AND SIMPLICIAL ACTIONS ON REAL TORIC SPACES

  • Kim, Jin Hong
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1051-1063
    • /
    • 2018
  • The real moment-angle complex (or, more generally, real polyhedral product) and its real toric space have recently attracted much attention in toric topology. The aim of this paper is to give two interesting remarks regarding real polyhedral products and real toric spaces. That is, we first show that Moore's conjecture holds to be true for certain real polyhedral products. In general, real polyhedral products show some drastic difference between the rational and torsion homotopy groups. Our result shows that at least in terms of the homotopy exponent at a prime this is not the case for real polyhedral products associated to a simplicial complex whose minimal missing faces are all k-simplices with $k{\geq}2$. Moreover, we also show a structural theorem for a finite group G acting simplicially on the real toric space. In other words, we show that G always contains an element of order 2, and so the order of G should be even.

곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석 (Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature)

  • 서광진;민병철;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

탄소나노튜브 다발의 압축 및 비틀림 좌굴 거동 (Compressive and Torsional Buckling Behavior of Carbon Nanotube Bundles)

  • 정병우;임장근
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.862-869
    • /
    • 2007
  • The compressive and torsional buckling behavior of carbon nanotube bundles at room temperature is examined with classical molecular dynamics simulation. The critical compressive load and stiffness of a single carbon nanotube in the bundle are found to be similar to those of individual carbon nanotubes. However, the critical torsional moment and stiffness of a single carbon nanotube in the bundle are found to be higher than those of individual carbon nanotubes. In addition, this study demonstrates that van der Waals interactions between the nanotubes in the bundle significantly affect the critical compressive load of the nanotube bundle.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.

The torsional behavior of reinforced self-compacting concrete beams

  • Aydin, Abdulkadir C.;Bayrak, Baris
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.187-198
    • /
    • 2019
  • Torsional behaviors of beams are investigated for the web reinforcement and the concrete type. Eight beams with self-compacting concrete (SCC) and twelve beams with conventional concrete (CC) were manufactured and tested. All the models manufactured as the $250{\times}300{\times}1500mm$ were tested according to relevant standards. Two concrete types, CC and SCC were designed for 20 and 40 MPa compressive strength. From the point of web reinforcement, the web spacing was chosen as 80 and 100 mm. The rotation angles of the concrete beams subjected to pure torsional moment as well as the cracks occurring in the beams, the ultimate and critical torsional moments were observed. Moreover, the ultimate torsional moments obtained experimentally were compared with the values evaluated theoretically according to some relevant standards and theories. The closest estimations were observed for the skew-bending theory and the Australian Standard.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권5호
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.