• Title/Summary/Keyword: torque ripple minimization

Search Result 56, Processing Time 0.022 seconds

Torque Ripple Minimization for Induction Motor Driven by a Photovoltaic Inverter

  • Atia, Yousry
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.679-690
    • /
    • 2009
  • The paper presents a new photovoltaic inverter for stand-alone induction motor application. The proposed system is composed of two stages. First stage is for the photovoltaic dc power feeding and second stage is dedicated to the motor-inverter subsystem and control technique. A direct torque control (DTC) with a novel switching strategy for motor torque ripple minimization is introduced. The novel DTC strategy is based on selecting a suitable voltage vector group for motor torque ripple minimization. A three-level voltage source inverter (VSI) is used instead of a two level inverter because the first has more available vectors and lower ripples in the output current and flux than the second, thus it has lower torque ripples. The photovoltaic array and battery bank are sized and the configuration is indicated based on sun-hour methodology. Simulation results show a comparison between three systems; two level VSI with conventional DTC strategy, three level VSI with conventional DTC, and the proposed system that has a novel DTC switching strategy applied to three level VSI. The results show that the proposed system has lower ripples in the current, flux and torque of the motor.

Shape Design for minimization Torque Ripple of Switched Reluctanc Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 형상 설계)

  • Kim, H.S.;Kwon, B.I.;Lee, J.W.;Kim, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.580-582
    • /
    • 2002
  • A major problems of Switched Reluctance Motor(SRM) is torque ripple which causes undesirable acoustic noise and vibration. To reduce the torque ripple two different approaches are used. One is to modify a motor geometry, the other is to manipulate motor current to improve performance. This paper presents modifications of the rotor pole shape which reduces the torque ripple.

  • PDF

Sensitivity Analysis of Geometrical Parameters of a Switched Reluctance Motor with Modified Pole Shapes

  • Balaji, M.;Ramkumar, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2014
  • A major problem in Switched Reluctance Motor (SRM) is torque ripple, which causes undesirable acoustic noise and vibration. This work focuses on reducing the undesirable torque ripple in SRM by modifying stator and rotor geometry. This paper presents a comparative study on torque ripple minimization in SRM with modified pole shapes such as stator pole taper, stator pole face with non-uniform air gap and pole shoe attached to rotor pole. Further this paper presents a detailed sensitivity analysis of the effect of different geometrical parameters that alter the pole face shapes on the performance of SRM. The analysis is performed using finite-element method considering average torque and torque ripple as performance parameters. Based on the analysis, a design combining stator pole taper with non-uniform air gap is proposed to improve the torque characteristics of SRM. The dynamic characteristics of the proposed design are simulated and the results show satisfactory reduction in torque ripple.

Torque Ripple Minimization of BLDC Motor Including Flux-Weakening Region (약계자영역을 포함한 BLDC 전동기의 새로운 토크 리플 최소화 방법)

  • 원태현;박한웅;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.445-454
    • /
    • 2002
  • Torque ripple control of brushless DC motors has been the persisting issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. In this paper, a novel approach to achieve the ripple-free torque control with maximum efficiency based on the d-q reference frame is presented and analyzed. The proposed approach can provide the optimized phase current waveforms over wide speed range incorporating cogging torque compensation without an access to the neutral point of the motor windings. Moreover, the undesirable errors caused by the assumptions such as 3 phase balance or symmetry of the phase back EMF between electrical cycles, which are related with the manufacturing imperfections, can be also eliminated. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. A hysteresis current control system is employed to produce high-frequency electromagnetic torque ripples for compensation. The validity and applicability of the proposed control scheme to real situations are verified through the simulations and experimental results.

Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구)

  • 이상훈;홍인표;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.91-100
    • /
    • 2002
  • This paper deals with the ripple reduction of the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor). Generally, torque ripple is an important causes of vibration and noise of motor. For reducing torque ripple in IPM with nonsinusoidal EMF, the optimal current which is able to control maximum torque/ampere is considered to be introduced In the proposed method. The fact of torque ripple being reduced when the optimal current Is used in motor is verified through simulation and experiment.

Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Choi, Jae-Hak;Kim, Sol;Lee, Kab-Jae;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

Copper Loss and Torque Ripple Minimization in Switched Reluctance Motors Considering Nonlinear and Magnetic Saturation Effects

  • Dowlatshahi, Milad;Saghaiannejad, Sayed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.351-361
    • /
    • 2014
  • The discrete torque generation mechanism and inherently nonlinear magnetic characterization of switched reluctance motors lead to unacceptable torque ripples and limit the application of these motors. In this study, a phase current profiling technique and torque sharing function are proposed in consideration of magnetic saturation effects and by minimizing power loss in the commutation area between the adjacent phases. Constant torque trajectories are considered in incoming and outgoing phase current planes based on nonlinear T-i-theta curves obtained from experimental measurements. Optimum points on constant torque trajectories are selected by improving drive efficiency and minimizing copper loss in each rotor position. A novel analytic invertible function is introduced to express phase torque based on rotor position and its corresponding phase current. The optimization problem is solved by the proposed torque function, and optimum torque sharing functions are derived. A modification method is also introduced to enhance the torque ripple-free region based on simple logic rules. Compared with conventional torque sharing functions, the resultant reference current from the proposed method has less peak and effective values and exhibits lower copper loss. Experimental and simulation results from a four-phase 4 KW 8/6 SRM validate the effectiveness of the proposed method.

An Improved Torque Ripple Minimization of Brushless DC Motor (개선된 Brushless DC Motor의 토크리플 최소화)

  • Chung, Jin-Hwa;Chung, Sun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.298-302
    • /
    • 1994
  • Brushless DC motors have a trapezoidal back EMF wave form and are fed with rectangular stator currents. Under these conditions, the torque produced is theoretcally constant. However, in practice, torque ripple may exist, one major cause of which conies from phase current commutation. In this paper we propose an improved method of reducing the torque ripple due to phase current commutation of indirectly restricting the uncommutated current through control of the other phase currents. Simulation results are present.

  • PDF

A Neuro-Fuzzy Based Torque Ripple Minimization of Switched Reluctance Motors (뉴로퍼지기법에 의한 SRM의 맥동토오크 최소화)

  • 박한웅;원태현;박성준;추영배;김철우;황영문
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.197-199
    • /
    • 1998
  • A neuro-fuzzy based torque profile model of SRM with considerably improved accuracy is obtained using the measured data for training. The inferred torque profiles, which comprise magnetic non-linearities, represent the dynamic model of SRM. Then the reference torque signal with optimized waveform and switching angle are decided to control the torque directly. Hence, the presented scheme controls the torque in an instantaneous basis, allowing powerful torque control with minimum torque ripple even during the transient operation of the motor. Simulation and experimental results demonstrating the effectiveness of the proposed torque control scheme are presented.

  • PDF

A Study of Torque Ripple Minimization and Maximum Torque Control for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 IPMSM의 토크리플 저감과 최대토크 제어에 관한 연구)

  • Hong In-Pyo;Lee Sang-Hun;Choi Cheol;Kim Jang-Mok;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.142-145
    • /
    • 2001
  • In this paper the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor) is analyzed. If flux distributions in the motor are not sinusoidal, a sinusoidal current produces important torque ripple. Torque ripple causes vibration and noise of motors. The optimized current waveforms for ripple free is able to be obtained by analysis of Back-EMF and torque equation. The method to find the optimal current is based on numerical predetermination. In this paper proposes current waveform which can eliminate the torque ripple, and the validity is verified through the simulation.

  • PDF