• Title/Summary/Keyword: torque model

Search Result 1,368, Processing Time 0.025 seconds

Advanced Circuit-Level Model of Magnetic Tunnel Junction-based Spin-Torque Oscillator with Perpendicular Anisotropy Field

  • Kim, Miryeon;Lim, Hyein;Ahn, Sora;Lee, Seungjun;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2013
  • Interest in spin-torque oscillators (STOs) has been increasing due to their potential use in communication devices. In particular the magnetic tunnel junction-based STO (MTJ-STO) with high perpendicular anisotropy is gaining attention since it can generate high output power. In this paper, a circuit-level model for an in-plane magnetized MTJ-STO with partial perpendicular anisotropy is proposed. The model includes the perpendicular torque and the shift field for more accurate modeling. The bias voltage dependence of perpendicular torque is represented as quadratic. The model is written in Verilog-A, and simulated using HSPICE simulator with a current-mirror circuit and a multi-stage wideband amplifier. The simulation results show the proposed model can accurately replicate the experimental data such that the power increases and the frequency decreases as the value of the perpendicular anisotropy gets close to the value of the demagnetizing field.

Study on Predicting Induction Motor Characteristics of Alternate QD Model Under Light Loads by Comparing Performance of MTPA Control (단위전류당최대토크 제어기의 성능 비교를 통한 경부하에서 대안모델의 유도전동기 동특성 예측에 관한 연구)

  • Kwon, Chun-Ki;Kim, Dong-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • This study investigates a high-accuracy alternate QD model to estimate the characteristics of induction motor under light loads. To demonstrate the usefulness of the alternate QD model, a maximum torque per amp (MTPA) control based on the alternate model is shown to outperform MTPA control based on the standard QD model. The experimental study conducted in this work exhibits that the MTPA control based on the alternate QD model tracks torque commands between 20 Nm and 30 Nm with 5% error, whereas the MTPA control based on the standard QD model generates torques lower by over 23% compared with the aforementioned torque commands. This result indicates that the alternate QD model is a highly accurate model for induction motors under light loads.

An Improved Model Predictive Direct Torque Control for Induction Machine Drives

  • Song, Wenxiang;Le, Shengkang;Wu, Xiaoxin;Ruan, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.674-685
    • /
    • 2017
  • The conventional model predictive direct torque control (MPDTC) method uses all of the voltage vectors available from a two level voltage source inverter for the prediction of the stator flux and stator current, which leads to a heavy computational burden. This paper proposes an improved model predictive direct torque control method. The stator flux predictive controller is obtained from an analysis of the relationship between the stator flux and the torque, which can be used to calculate the desired voltage vector based on the stator flux and torque reference. Then this method only needs to evaluate three voltage vectors in the sector of the desired voltage vector. As a result, the computational burden of the conventional MPDTC is effectively reduced. The time delay introduced by the computational time causes the stator current to oscillate around its reference. It also increases the current and torque ripples. To address this problem, a delay compensation method is adopted in this paper. Furthermore, the switching frequency of the inverter is significantly reduced by introducing the constraint of the power semiconductor switching number to the cost function of the MPDTC. Both simulation and experimental results are presented to verify the validity and feasibility of the proposed method.

A Study on Tapping Torque in High Speed Tapping (고속탭핑에 있어서 절삭토크에 관한 연구)

  • 최만성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3195-3201
    • /
    • 1994
  • In order to analytically predict tapping torque and thrust force in high speed tapping, a cutting model for main cutting edge with a uniformly restricted tool-chip contact area were developed. From this model equations are derived for the prediction of tapping torque given the cutting conditions, tap geometry, and an empirical factor which is related to the workmaterial. Computed values of torque is shown to compare favorably with those obtained from tapping tests on 16MnCr5. The applied torque about the cutting edge of teeth at lead chamfer is estimated respectively and it is shown that observed value is gradually decreased with following teeth.

Study on the Ld, Lq Characteristic Parameter of Interior Permanent Magnet Synchronous Motor in different barrier width (배리어 길이에 따른 매입형 영구자석 동기전동기의 Ld, Lq 특성 파라미터에 관한 연구)

  • Jang, Ik-Sang;Jin, Chang-Sung;Jung, Dae-Sung;Kim, Seung-Joo;Park, Jae-Young;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.709-710
    • /
    • 2008
  • In this paper, we calculated permanent magnetic linkage flux ${\psi}_{\alpha}$ and Ld, Lq parameters of IPMSM and compared two model which has different barrier width. IPMSM has two kinds of torque that reluctance torque and magnetic torque. In constant torque region, using the Maxwell stress tensor method, we calculated the torque and current phase angle ${\beta}$ which has appeared maximum torque. In weakening flux region, we calculated the current phase angle ${\beta}$ which flux ${\psi}_o$ lower than limited flux ${\psi}_{omax}$. From the current phase angle ${\beta}$, we calculated torque by torque equation and compared two model characteristic.

  • PDF

Experimental Study on the Friction Torque Characteristics of Magnetic Fluid Seals for High Vacuum System (고진공용 자성유체시일이 마찰 토오크 특성에 관한 실험적 연구)

  • 김청균;나윤환;김한식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.145-152
    • /
    • 1996
  • This paper deals with an experimental study on the f~iction torque characteristics of magnctic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the fi'iction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model II is 1.73 ~ 2.56, 2.0 ~ 2.89, 2.0 - 3.25 times larger than those of Model I under the atmospheric pressure, vacuum pressure(10$^{-4}$ and 10$^{-6}$ torr), respectively.

  • PDF

Development and Validation of Simulation Model for Traction Power and Driving Torque Prediction of Upland Multipurpose Platform (밭농업용 다목적 플랫폼의 견인동력 및 구동토크 예측을 위한 시뮬레이션 모델 개발 및 검증)

  • Hyeon Ho Jeon;Seung Min Baek;Seung Yun Baek;Yi Su Hong;Taek Jin Kim;Yong Choi;Young Keun Kim;Sang Hee Lee;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.16-26
    • /
    • 2023
  • Although the upland field area of Korea is high as 44.8%, the platform optimized for the upland field is insufficient. It is necessary to develop an optimized platform for the upland field because the upland field environment is an irregular environment with many slopes. In addition, due to the characteristic of agricultural operations, the traction power and torque of the platform have to be sufficient. Therefore, in this study, a simulation model that can predict the traction power and driving torque of a crawler-type platform for the upland field was developed and validated using the specifications of the crawler platform. The simulation model was developed using Amesim (19.1, Siemens, Germany). The development of the model was conducted using the specifications of the platform. A measurement system was developed to validate the simulation model. The traction power data of the simulation model was validated with the traction force and vehicle speed. The driving torque data of the simulation model was validated with the torque of the sprocket on the crawler system. As a result of the analysis, the error between measurement and simulation results occurred within 10%, and it was determined that the traction power and driving torque prediction of the crawler platform using this model was possible.

A Study on the Basic Design of a Torque Converter Using Equivalent Performance Model (등가 성능모델을 이용한 토크 컨버터의 기초 설계에 관한 연구)

  • Jang, Wook-Jin;Lim, Weon-Sig;Lee, Jang-Mooee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.369-377
    • /
    • 1997
  • The torque converter, a major part of automatic transmissions, has many difficulties in analysis due to the factors such as power transmission through fluid flow, complex internal geometry, and various operating conditions. Because of such difficulties, the dynamic analysis and design of a torque converter are generally carried out by using equivalent performance model which is based on the concept of mean flow path. Since the design procedures of a torque converter are essential technology of automotive industry, the details of the procedures are rarely published. In this study, the basic design procedures of a torque converter are systemized and coded based on the equivalent performance model. The mathematical methods to deal with mean flow path determination and the core-shape are developed. And by using this model, the method of determination of performance parameters satisfying the requested performance is proposed. Finally, to embody the three-dimensional shape, the intermediate blade angles which maximize the tractive performance are determined and laid out.

A Study on Prediction of Maximum Steering Torque of Tractor on Off-road (Off-road에서 트랙터의 최대 조타력 예측에 관한 연구)

  • Kim S.Y.;Lee K.S.;Lee S.S.;Lee S.B.;Lee J.W.;Park W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.81-87
    • /
    • 2006
  • In this study, a mathematical model was suggested to predict the maximum steering torque of a tractor on off-road. The model took into account the characteristics of soil, including the pressure-sinkage and the shearing characteristics as well as the primary design parameters of steering system of the tractor. The efficiency of the developed model was verified via comparison of the maximum steering torque predicted using the model with those measured from steering torque test. The results showed that the predicted maximum steering torques were in good agreement with the measured ones from the steering test on soft soil in which tractor is generally operated. Thus, we concluded that the model developed in this study could be used for prediction of maximum steering torque of a tractor.

Energy Model Based Direct Torque Control of Induction Motor Using IP Controllers

  • Mannan, Mohammad Abdul;Murata, Toshiaki;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.405-411
    • /
    • 2012
  • This paper deals with direct torque control of an induction motor (IM) with constant switching frequency. The desired torque is obtained from the speed controller which is designed using the IP controller. Decoupling control of torque and flux is developed based on the energy model of IM using the IP controller strategies. The desired d-axis and q-axis stator voltage components are obtained from the designed controller, which decouples torque and flux. The constant switching frequency can be applied using space-vector pulse width modulation, since the desired stator voltage can be known from the decoupling torque and flux controllers. In order to achieve stable operation of the proposed IP controllers, the gains of the controllers are chosen by setting the poles in negative (left) half of s-plane and by choosing the rising time for the response of the step function. The proposed controller was verified in simulations using Matlab/Simulink and results have proven excellent performance. It was found that the proposed IP controllers can provide excellent performance to track the desired torque and speed and to reject the disturbance of load.